Download or read book Modeling Survival Data Extending the Cox Model written by Terry M. Therneau and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.
Download or read book Robust Methods in Biostatistics written by Stephane Heritier and published by John Wiley & Sons. This book was released on 2009-05-11 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.
Download or read book Survival Analysis State of the Art written by John P. Klein and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Download or read book Robustness Theory and Application written by Brenton R. Clarke and published by John Wiley & Sons. This book was released on 2018-07-11 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A preeminent expert in the field explores new and exciting methodologies in the ever-growing field of robust statistics Used to develop data analytical methods, which are resistant to outlying observations in the data, while capable of detecting outliers, robust statistics is extremely useful for solving an array of common problems, such as estimating location, scale, and regression parameters. Written by an internationally recognized expert in the field of robust statistics, this book addresses a range of well-established techniques while exploring, in depth, new and exciting methodologies. Local robustness and global robustness are discussed, and problems of non-identifiability and adaptive estimation are considered. Rather than attempt an exhaustive investigation of robustness, the author provides readers with a timely review of many of the most important problems in statistical inference involving robust estimation, along with a brief look at confidence intervals for location. Throughout, the author meticulously links research in maximum likelihood estimation with the more general M-estimation methodology. Specific applications and R and some MATLAB subroutines with accompanying data sets—available both in the text and online—are employed wherever appropriate. Providing invaluable insights and guidance, Robustness Theory and Application: Offers a balanced presentation of theory and applications within each topic-specific discussion Features solved examples throughout which help clarify complex and/or difficult concepts Meticulously links research in maximum likelihood type estimation with the more general M-estimation methodology Delves into new methodologies which have been developed over the past decade without stinting on coverage of “tried-and-true” methodologies Includes R and some MATLAB subroutines with accompanying data sets, which help illustrate the power of the methods described Robustness Theory and Application is an important resource for all statisticians interested in the topic of robust statistics. This book encompasses both past and present research, making it a valuable supplemental text for graduate-level courses in robustness.
Download or read book Applied Survival Analysis Using R written by Dirk F. Moore and published by Springer. This book was released on 2016-05-11 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.
Download or read book Survival Analysis written by Xian Liu and published by John Wiley & Sons. This book was released on 2012-06-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Download or read book Biostatistical Methods written by John M. Lachin and published by John Wiley & Sons. This book was released on 2014-08-22 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . an excellent textbook . . . an indispensable reference for biostatisticians and epidemiologists." —International Statistical Institute A new edition of the definitive guide to classical and modern methods of biostatistics Biostatistics consists of various quantitative techniques that are essential to the description and evaluation of relationships among biologic and medical phenomena. Biostatistical Methods: The Assessment of Relative Risks, Second Edition develops basic concepts and derives an expanded array of biostatistical methods through the application of both classical statistical tools and more modern likelihood-based theories. With its fluid and balanced presentation, the book guides readers through the important statistical methods for the assessment of absolute and relative risks in epidemiologic studies and clinical trials with categorical, count, and event-time data. Presenting a broad scope of coverage and the latest research on the topic, the author begins with categorical data analysis methods for cross-sectional, prospective, and retrospective studies of binary, polychotomous, and ordinal data. Subsequent chapters present modern model-based approaches that include unconditional and conditional logistic regression; Poisson and negative binomial models for count data; and the analysis of event-time data including the Cox proportional hazards model and its generalizations. The book now includes an introduction to mixed models with fixed and random effects as well as expanded methods for evaluation of sample size and power. Additional new topics featured in this Second Edition include: Establishing equivalence and non-inferiority Methods for the analysis of polychotomous and ordinal data, including matched data and the Kappa agreement index Multinomial logistic for polychotomous data and proportional odds models for ordinal data Negative binomial models for count data as an alternative to the Poisson model GEE models for the analysis of longitudinal repeated measures and multivariate observations Throughout the book, SAS is utilized to illustrate applications to numerous real-world examples and case studies. A related website features all the data used in examples and problem sets along with the author's SAS routines. Biostatistical Methods, Second Edition is an excellent book for biostatistics courses at the graduate level. It is also an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.
Download or read book The Frailty Model written by Luc Duchateau and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
Download or read book Developments in Robust Statistics written by Rudolf Dutter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
Download or read book Biostatistical Applications in Cancer Research written by Craig Beam and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biostatistics is defined as much by its application as it is by theory. This book provides an introduction to biostatistical applications in modern cancer research that is both accessible and valuable to the cancer biostatistician or to the cancer researcher, learning biostatistics. The topical areas include active areas of the application of biostatistics to modern cancer research: survival analysis, screening, diagnostics, spatial analysis and the analysis of microarray data. Biostatistics is an essential component of basic and clinical cancer research. The text, authored by distinguished figures in the field, addresses clinical issues in statistical analysis. The spectrum of topics discussed ranges from fundamental methodology to clinical and translational applications.
Download or read book Introducing Survival and Event History Analysis written by Melinda Mills and published by SAGE. This book was released on 2011-01-19 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.
Download or read book R for Health Data Science written by Ewen Harrison and published by CRC Press. This book was released on 2020-12-31 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.
Download or read book Robust Methods in Biostatistics written by Stephane Heritier and published by Wiley. This book was released on 2009-05-26 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.
Download or read book The Cox Model and Its Applications written by Mikhail Nikulin and published by Springer. This book was released on 2016-04-11 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will be of interest to readers active in the fields of survival analysis, genetics, ecology, biology, demography, reliability and quality control. Since Sir David Cox’s pioneering work in 1972, the proportional hazards model has become the most important model in survival analysis. The success of the Cox model stimulated further studies in semiparametric and nonparametric theories, counting process models, study designs in epidemiology, and the development of many other regression models that could offer more flexible or more suitable approaches in data analysis. Flexible semiparametric regression models are increasingly being used to relate lifetime distributions to time-dependent explanatory variables. Throughout the book, various recent statistical models are developed in close connection with specific data from experimental studies in clinical trials or from observational studies.
Download or read book Biostatistical Genetics and Genetic Epidemiology written by Robert C. Elston and published by John Wiley & Sons. This book was released on 2002-04-22 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human Genetics concerns the study of genetic forces in man. By studying our genetic make-up we are able to understand more about our heritage and evolution. Some of the original, and most significant research in genetics centred around the study of the genetics of complex diseases - genetic epidemiology. This is the third in a highly successful series of books based on articles from the Encyclopedia of Biostatistics. This volume will be a timely and comprehensive reference, for a subject that has seen a recent explosion of interest following the completion of the first draft of the Human Genome Mapping Project. The editors have updated the articles from the Human Genetics section of the EoB, have adpated other articles to give them a genetic feel, and have included a number of newly commissioned articles to ensure the work is comprehensive and provides a self-contained reference.
Download or read book Statistical Models Based on Counting Processes written by Per K. Andersen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern survival analysis and more general event history analysis may be effectively handled within the mathematical framework of counting processes. This book presents this theory, which has been the subject of intense research activity over the past 15 years. The exposition of the theory is integrated with careful presentation of many practical examples, drawn almost exclusively from the authors'own experience, with detailed numerical and graphical illustrations. Although Statistical Models Based on Counting Processes may be viewed as a research monograph for mathematical statisticians and biostatisticians, almost all the methods are given in concrete detail for use in practice by other mathematically oriented researchers studying event histories (demographers, econometricians, epidemiologists, actuarial mathematicians, reliability engineers and biologists). Much of the material has so far only been available in the journal literature (if at all), and so a wide variety of researchers will find this an invaluable survey of the subject.