EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robust Estimation Based on Grouped adjusted Data

Download or read book Robust Estimation Based on Grouped adjusted Data written by Kazumitsu Nawata and published by . This book was released on 1986 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modern Statistics with R

Download or read book Modern Statistics with R written by Måns Thulin and published by CRC Press. This book was released on 2024-08-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Book Robustness in Statistics

Download or read book Robustness in Statistics written by Robert L. Launer and published by . This book was released on 1979 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.

Book Estimation of Generalized Regression Models by the Grouping Method

Download or read book Estimation of Generalized Regression Models by the Grouping Method written by Kazumitsu Nawata and published by . This book was released on 1993 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Statistical Theory and Method Abstracts

Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 1992 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robustness in Statistics

Download or read book Robustness in Statistics written by Robert L. Launer and published by Academic Press. This book was released on 2014-05-12 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robustness in Statistics contains the proceedings of a Workshop on Robustness in Statistics held on April 11-12, 1978, at the Army Research Office in Research Triangle Park, North Carolina. The papers review the state of the art in statistical robustness and cover topics ranging from robust estimation to the robustness of residual displays and robust smoothing. The application of robust regression to trajectory data reduction is also discussed. Comprised of 14 chapters, this book begins with an introduction to robust estimation, paying particular attention to iteration schemes and error structure of estimators. Sensitivity and influence curves as well as their connection with jackknife estimates are described. The reader is then introduced to a simple analog of trimmed means that can be used for studying residuals from a robust point-of-view; a class of robust estimators (called P-estimators) based on the location and scale-invariant Pitman estimators of location; and robust estimation in the presence of outliers. Subsequent chapters deal with robust regression and its use to reduce trajectory data; tests for censoring of extreme values, especially when population distributions are incompletely defined; and robust estimation for time series autoregressions. This monograph should be of interest to mathematicians and statisticians.

Book Modern Methods for Robust Regression

Download or read book Modern Methods for Robust Regression written by Robert Andersen and published by SAGE. This book was released on 2008 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.

Book Journal of Economic Literature

Download or read book Journal of Economic Literature written by and published by . This book was released on 1990 with total page 1272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discriminant Analysis and Statistical Pattern Recognition

Download or read book Discriminant Analysis and Statistical Pattern Recognition written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Book Distributionally Robust Learning

Download or read book Distributionally Robust Learning written by Ruidi Chen and published by . This book was released on 2020-12-23 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Staff Paper

Download or read book Staff Paper written by and published by . This book was released on 1990 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book Bootstrapping

    Book Details:
  • Author : Christopher Z. Mooney
  • Publisher : SAGE
  • Release : 1993-08-09
  • ISBN : 9780803953819
  • Pages : 84 pages

Download or read book Bootstrapping written by Christopher Z. Mooney and published by SAGE. This book was released on 1993-08-09 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Book Journal of Econometrics

Download or read book Journal of Econometrics written by and published by . This book was released on 2002 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Analysis of Covariance and Alternatives

Download or read book The Analysis of Covariance and Alternatives written by Bradley Huitema and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.