Download or read book Rigid Cohomology over Laurent Series Fields written by Christopher Lazda and published by Springer. This book was released on 2016-04-27 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
Download or read book Transcendence in Algebra Combinatorics Geometry and Number Theory written by Alin Bostan and published by Springer Nature. This book was released on 2021-11-02 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brașov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.
Download or read book p adic Differential Equations written by Kiran S. Kedlaya and published by Cambridge University Press. This book was released on 2022-06-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.
Download or read book Rigid Analytic Geometry and Its Applications written by Jean Fresnel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Download or read book Algebraic Geometry Salt Lake City 2015 written by Richard Thomas and published by American Mathematical Soc.. This book was released on 2018-06-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Download or read book Documenta Mathematica written by and published by . This book was released on 2005 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Motivic Integration and its Interactions with Model Theory and Non Archimedean Geometry Volume 1 written by Raf Cluckers and published by Cambridge University Press. This book was released on 2011-09-22 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembles different theories of motivic integration for the first time, providing all of the necessary background for graduate students and researchers from algebraic geometry, model theory and number theory. In a rapidly-evolving area of research, this volume and Volume 2, which unite the several viewpoints and applications, will prove invaluable.
Download or read book Featured Reviews in Mathematical Reviews 1995 1996 written by Donald G. Babbitt and published by American Mathematical Soc.. This book was released on with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of reprinted 'Featured Reviews' published in Mathematical Reviews (MR) in 1995 and 1996 makes widely available informed reviews of some of the best mathematics published recently. 'Featured Reviews' were introduced in MR at the beginning of 1995 in part to provide some guidance to the current research-level literature. With the exponential growth of publications in mathematical research in the first half-century of MR, it had become essentially impossible for users of MR to identify the most important new research-level books and papers, especially in fields outside of the users' own expertise. This work identifies some of the "best" new publications, papers, and books that are expected to have a significant impact on the area of pure or applied mathematics with which researchers are concerned. All of the papers reviewed here contain interesting new ideas or applications, a deep synthesis of existing ideas, or any combination of these. The volume is intended to lead the user to important new research across all fields covered by MR.
Download or read book Proceedings Of The International Congress Of Mathematicians 2018 Icm 2018 In 4 Volumes written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1770 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Formal and Rigid Geometry written by Siegfried Bosch and published by Springer. This book was released on 2014-08-22 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Download or read book Rigid Cohomology written by Bernard Le Stum and published by Cambridge University Press. This book was released on 2007-09-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms to compute the number of rational points of such varieties. This is the first book to give a complete treatment of the theory, from full discussion of all the basics to descriptions of the very latest developments. Results and proofs are included that are not available elsewhere, local computations are explained, and many worked examples are given. This accessible tract will be of interest to researchers working in arithmetic geometry, p-adic cohomology theory, and related cryptographic areas.
Download or read book Generalized Lie Theory in Mathematics Physics and Beyond written by Sergei D. Silvestrov and published by Springer Science & Business Media. This book was released on 2008-11-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
Download or read book Homotopy Theory and Arithmetic Geometry Motivic and Diophantine Aspects written by Frank Neumann and published by Springer Nature. This book was released on 2021-09-29 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
Download or read book Compositio Mathematica written by and published by . This book was released on 1989 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Noncommutative Geometry Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Download or read book p adic Differential Equations written by Kiran S. Kedlaya and published by Cambridge University Press. This book was released on 2010-06-10 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.