EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book RF Circuit Designs for Reliability and Process Variability Resilience

Download or read book RF Circuit Designs for Reliability and Process Variability Resilience written by Ekavut Kritchanchai and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: CMOS devices are scaled down and beyond pose significant process variability and reliability issues. Negative biased temperature instability (NBTI) and hot carrier injection (HCI) are well-known aging phenomena that degrade transistor and circuit performance. Yield analysis and optimization, which takes into account the manufacturing tolerances, model uncertainties, variations in the process parameters, and aging factors are known as indispensable components of the circuit design procedure. Process variability issues become more predominant as the feature size decreases. With these insights provided, reliability and variability evaluations on typical RF circuits and possible compensation techniques are highly desirable. In this work, a class F power amplifier was designed and evaluated using TSMC 0.18 [micrometer] RF technology. The PA’s output power and power-added efficiency were evaluated using the ADS simulation. Physical insight of transistor operation in the RF circuit environment was examined using the Sentaurus mixed-mode device and circuit simulation. The hot electron effect and device self-heating degraded the output power and power-added efficiency of the power amplifier, especially when both the input transistor and output transistor suffered high impact ionization rates and lattice heating.

Book CMOS RF Circuit Design for Reliability and Variability

Download or read book CMOS RF Circuit Design for Reliability and Variability written by Jiann-Shiun Yuan and published by Springer. This book was released on 2016-04-13 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is CMOS RF circuit design for reliability. The device reliability and process variation issues on RF transmitter and receiver circuits will be particular interest to the readers in the field of semiconductor devices and circuits. This proposed book is unique to explore typical reliability issues in the device and technology level and then to examine their impact on RF wireless transceiver circuit performance. Analytical equations, experimental data, device and circuit simulation results will be given for clear explanation. The main benefit the reader derive from this book will be clear understanding on how device reliability issues affects the RF circuit performance subjected to operation aging and process variations.

Book Study of Design for Reliability of RF and Analog Circuits

Download or read book Study of Design for Reliability of RF and Analog Circuits written by Hongxia Tang and published by . This book was released on 2012 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to continued device dimensions scaling, CMOS transistors in the nanometer regime have resulted in major reliability and variability challenges. Reliability issues such as channel hot electron injection, gate dielectric breakdown, and negative bias temperature instability (NBTI) need to be accounted for in the design of robust RF circuits. In addition, process variations in the nanoscale CMOS transistors are another major concern in today's circuits design. An adaptive gate-source biasing scheme to improve the RF circuit reliability is presented in this work. The adaptive method automatically adjusts the gate-source voltage to compensate the reduction in drain current subjected to various device reliability mechanisms. A class-AB RF power amplifier shows that the use of a source resistance makes the power-added efficiency robust against threshold voltage and mobility variations, while the use of a source inductance is more reliable for the input third-order intercept point. A RF power amplifier with adaptive gate biasing is proposed to improve the circuit device reliability degradation and process variation. The performances of the power amplifier with adaptive gate biasing are compared with those of the power amplifier without adaptive gate biasing technique. The adaptive gate biasing makes the power amplifier more resilient to process variations as well as the device aging such as mobility and threshold voltage degradation. Injection locked voltage-controlled oscillators (VCOs) have been examined. The VCOs are implemented using TSMC 0.18 [micrometer] mixed-signal CMOS technology. The injection locked oscillators have improved phase noise performance than free running oscillators. A differential Clapp-VCO has been designed and fabricated for the evaluation of hot electron reliability. The differential Clapp-VCO is formed using cross-coupled nMOS transistors, on-chip transformers/inductors, and voltage-controlled capacitors. The experimental data demonstrate that the hot carrier damage increases the oscillation frequency and degrades the phase noise of Clapp-VCO. A p-channel transistor only VCO has been designed for low phase noise. The simulation results show that the phase noise degrades after NBTI stress at elevated temperature. This is due to increased interface states after NBTI stress. The process variability has also been evaluated.

Book CMOS RF Cituits  sic  Variability and Reliability Resilient Design  Modeling  and Simulation

Download or read book CMOS RF Cituits sic Variability and Reliability Resilient Design Modeling and Simulation written by Yidong Liu and published by . This book was released on 2011 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work presents a novel voltage biasing design that helps the CMOS RF circuits resilient to variability and reliability. The biasing scheme provides resilience through the threshold voltage (V[subscript T) adjustment, and at the mean time it does not degrade the PA performance. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. Power Amplifier (PA) and Low Noise Amplifier (LNA) are investigated case by case through modeling and experiment. PTM 65nm technology is adopted in modeling the transistors within these RF blocks. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. The results show that the biasing design helps improve the robustness of the PA in terms of linear gain, P1dB, Psat, and power added efficiency (PAE). Except for post-fabrication calibration capability, the design reduces the majority performance sensitivity of PA by 50% when subjected to threshold voltage (V[subscript T]) shift and 25% to electron mobility ([mu subscript n]) degradation. The impact of degradation mismatches is also investigated. It is observed that the accelerated aging of MOS transistor in the biasing circuit will further reduce the sensitivity of PA. In the study of LNA, a 24 GHz narrow band cascade LNA with adaptive biasing scheme under various aging rate is compared to LNA without such biasing scheme. The modeling and simulation results show that the adaptive substrate biasing reduces the sensitivity of noise figure and minimum noise figure subject to process variation and device aging such as threshold voltage shift and electron mobility degradation. Simulation of different aging rate also shows that the sensitivity of LNA is further reduced with the accelerated aging of the biasing circuit. Thus, for majority RF transceiver circuits, the adaptive body biasing scheme provides overall performance resilience to the device reliability induced degradation. Also the tuning ability designed in RF PA and LNA provides the circuit post-process calibration capability.

Book Analog Circuit Design for Process Variation Resilient Systems on a Chip

Download or read book Analog Circuit Design for Process Variation Resilient Systems on a Chip written by Marvin Onabajo and published by Springer Science & Business Media. This book was released on 2012-03-08 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes several techniques to address variation-related design challenges for analog blocks in mixed-signal systems-on-chip. The methods presented are results from recent research works involving receiver front-end circuits, baseband filter linearization, and data conversion. These circuit-level techniques are described, with their relationships to emerging system-level calibration approaches, to tune the performances of analog circuits with digital assistance or control. Coverage also includes a strategy to utilize on-chip temperature sensors to measure the signal power and linearity characteristics of analog/RF circuits, as demonstrated by test chip measurements. Describes a variety of variation-tolerant analog circuit design examples, including from RF front-ends, high-performance ADCs and baseband filters; Includes built-in testing techniques, linked to current industrial trends; Balances digitally-assisted performance tuning with analog performance tuning and mismatch reduction approaches; Describes theoretical concepts as well as experimental results for test chips designed with variation-aware techniques.

Book RF Power Amplifier and Oscillator Design for Reliability and Variability

Download or read book RF Power Amplifier and Oscillator Design for Reliability and Variability written by Shuyu Chen and published by . This book was released on 2013 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: CMOS RF circuit design has been an ever-lasting research field. It gained so much attention since RF circuits have high mobility and wide band efficiency, while CMOS technology has the advantage of low cost and better capability of integration. At the same time, IC circuits never stopped scaling down for the recent many decades. Reliability issues with RF circuits have become more and more severe with device scaling down: reliability effects such as gate oxide break down, hot carrier injection, negative bias temperature instability, have been amplified as the device size shrinks. Process variability issues also become more predominant as the feature size decreases. With these insights provided, reliability and variability evaluations on typical RF circuits and possible compensation techniques are highly desirable. In this work, a class E power amplifier is designed and laid out using TSMC 0.18 [micrometer] RF technology and the chip was fabricated. Oxide stress and hot electron tests were carried out at elevated supply voltage, fresh measurement results were compared with different stress conditions after 10 hours. Test results matched very well with mixed mode circuit simulations, proved that hot carrier effects degrades PA performances like output power, power efficiency, etc. Self- heating effects were examined on a class AB power amplifier since PA has high power operations. Device temperature simulation was done both in DC and mixed mode level. Different gate biasing techniques were analyzed and their abilities to compensate output power were compared. A simple gate biasing circuit turned out to be efficient to compensate self-heating effects under different localized heating situations. Process variation was studied on a classic Colpitts oscillator using Monte-Carlo simulation. Phase noise was examined since it is a key parameter in oscillator. Phase noise was modeled using analytical equations and supported by good match between MATLAB results and ADS simulation. An adaptive body biasing circuit was proposed to eliminate process variation. Results from probability density function simulation demonstrated its capability to relieve process variation on phase noise. Standard deviation of phase noise with adaptive body bias is much less than the one without compensation. Finally, a robust, adaptive design technique using PLL as on-chip sensor to reduce Process, Voltage, Temperature (P.V.T.) variations and other aging effects on RF PA was evaluated. The frequency and phase of ring oscillator need to be adjusted to follow the frequency and phase of input in PLL no matter how the working condition varies. As a result, the control signal of ring oscillator has to fluctuate according to the working condition, reflecting the P.V.T changes. RF circuits suffer from similar P.V.T. variations. The control signal of PLL is introduced to RF circuits and converted to the adaptive tuning voltage for substrate bias. Simulation results illustrate that the PA output power under different variations is more flat than the one with no compensation. Analytical equations show good support to what has been observed.

Book RF Frontend Design for Process Variation Tolerant Receivers

Download or read book RF Frontend Design for Process Variation Tolerant Receivers written by Pooyan Sakian and published by Springer. This book was released on 2012-02-18 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a number of challenges faced by designers of wireless receivers, given complications caused by the shrinking of electronic and mobile devices circuitry into ever-smaller sizes and the resulting complications on the manufacturability, production yield, and the end price of the products. The authors describe the impact of process technology on the performance of the end product and equip RF designers with countermeasures to cope with such problems. The mechanisms by which these problems arise are analyzed in detail and novel solutions are provided, including design guidelines for receivers with robustness to process variations and details of circuit blocks that obtain the required performance level. Describes RF receiver frontends and their building blocks from a system- and circuit-level perspective; Provides system-level analysis of a generic RF receiver frontend with robustness to process variations; Includes details of CMOS circuit design at 60GHz and reconfigurable circuits at 60GHz; Covers millimeter-wave circuit design with robustness to process variations.

Book Performance Optimization Techniques in Analog  Mixed Signal  and Radio Frequency Circuit Design

Download or read book Performance Optimization Techniques in Analog Mixed Signal and Radio Frequency Circuit Design written by Fakhfakh, Mourad and published by IGI Global. This book was released on 2014-10-31 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.

Book Technologies for Smart Sensors and Sensor Fusion

Download or read book Technologies for Smart Sensors and Sensor Fusion written by Kevin Yallup and published by CRC Press. This book was released on 2017-12-19 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting new developments are enabling sensors to go beyond the realm of simple sensing of movement or capture of images to deliver information such as location in a built environment, the sense of touch, and the presence of chemicals. These sensors unlock the potential for smarter systems, allowing machines to interact with the world around them in more intelligent and sophisticated ways. Featuring contributions from authors working at the leading edge of sensor technology, Technologies for Smart Sensors and Sensor Fusion showcases the latest advancements in sensors with biotechnology, medical science, chemical detection, environmental monitoring, automotive, and industrial applications. This valuable reference describes the increasingly varied number of sensors that can be integrated into arrays, and examines the growing availability and computational power of communication devices that support the algorithms needed to reduce the raw sensor data from multiple sensors and convert it into the information needed by the sensor array to enable rapid transmission of the results to the required point. Using both SI and US units, the text: Provides a fundamental and analytical understanding of the underlying technology for smart sensors Discusses groundbreaking software and sensor systems as well as key issues surrounding sensor fusion Exemplifies the richness and diversity of development work in the world of smart sensors and sensor fusion Offering fresh insight into the sensors of the future, Technologies for Smart Sensors and Sensor Fusion not only exposes readers to trends but also inspires innovation in smart sensor and sensor system development.

Book A Study of Process Variations and Their Impact Analysis in RF Circuits

Download or read book A Study of Process Variations and Their Impact Analysis in RF Circuits written by and published by . This book was released on 2006 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an in-depth empirical research to understand the impact of process variations in RF Circuits. We present a hierarchical two phase approach to study the impact of process based variations on device characteristics and circuit-level performance as well. The simulations based on Monte-Carlo techniques have been conducted extensively at different levels to gauge the impact of process variations. Such sensitivity analysis helps to identify the critical components for various RF Cores at both layout/fabrication level, as well as circuit-level, which affect the performance of the system in the face of process based variations. This knowledge helps designers make necessary changes in the design phase to improve yield at the production stage. Thus, the hierarchical defect mapping based on device/component performance and sensitivity helps in optimizing circuit design by suitable consideration of component topologies for robust design. From a testing perspective, the defect analysis can help identify realistic faults which are bound to occur in RF Circuits. This helps to reduce the test signal generation effort to detect different types of faults in these circuits, which in turn results in cost savings in the testing process. This work also focuses on exploratory investigations to find alternative techniques to Monte-Carlo simulation based approach. Further, new ideas based on extending fault equivalence concepts between catastrophic and parametric faults for ease of test generation in RF Circuits have also been presented. (Abstract shortened by UMI.).

Book Low Power Variation Tolerant Design in Nanometer Silicon

Download or read book Low Power Variation Tolerant Design in Nanometer Silicon written by Swarup Bhunia and published by Springer Science & Business Media. This book was released on 2010-11-10 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design considerations for low-power operations and robustness with respect to variations typically impose contradictory requirements. Low-power design techniques such as voltage scaling, dual-threshold assignment and gate sizing can have large negative impact on parametric yield under process variations. This book focuses on circuit/architectural design techniques for achieving low power operation under parameter variations. We consider both logic and memory design aspects and cover modeling and analysis, as well as design methodology to achieve simultaneously low power and variation tolerance, while minimizing design overhead. This book will discuss current industrial practices and emerging challenges at future technology nodes.

Book Built in Fault Tolerant Computing Paradigm for Resilient Large Scale Chip Design

Download or read book Built in Fault Tolerant Computing Paradigm for Resilient Large Scale Chip Design written by Xiaowei Li and published by Springer Nature. This book was released on 2023-03-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the end of Dennard scaling and Moore’s law, IC chips, especially large-scale ones, now face more reliability challenges, and reliability has become one of the mainstay merits of VLSI designs. In this context, this book presents a built-in on-chip fault-tolerant computing paradigm that seeks to combine fault detection, fault diagnosis, and error recovery in large-scale VLSI design in a unified manner so as to minimize resource overhead and performance penalties. Following this computing paradigm, we propose a holistic solution based on three key components: self-test, self-diagnosis and self-repair, or “3S” for short. We then explore the use of 3S for general IC designs, general-purpose processors, network-on-chip (NoC) and deep learning accelerators, and present prototypes to demonstrate how 3S responds to in-field silicon degradation and recovery under various runtime faults caused by aging, process variations, or radical particles. Moreover, we demonstrate that 3S not only offers a powerful backbone for various on-chip fault-tolerant designs and implementations, but also has farther-reaching implications such as maintaining graceful performance degradation, mitigating the impact of verification blind spots, and improving chip yield. This book is the outcome of extensive fault-tolerant computing research pursued at the State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences over the past decade. The proposed built-in on-chip fault-tolerant computing paradigm has been verified in a broad range of scenarios, from small processors in satellite computers to large processors in HPCs. Hopefully, it will provide an alternative yet effective solution to the growing reliability challenges for large-scale VLSI designs.

Book Nanoscale Devices

    Book Details:
  • Author : Brajesh Kumar Kaushik
  • Publisher : CRC Press
  • Release : 2018-11-16
  • ISBN : 1351670212
  • Pages : 410 pages

Download or read book Nanoscale Devices written by Brajesh Kumar Kaushik and published by CRC Press. This book was released on 2018-11-16 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter

Book Counterfeit Integrated Circuits

Download or read book Counterfeit Integrated Circuits written by Mark (Mohammad) Tehranipoor and published by Springer. This book was released on 2015-02-12 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely and exhaustive study offers a much-needed examination of the scope and consequences of the electronic counterfeit trade. The authors describe a variety of shortcomings and vulnerabilities in the electronic component supply chain, which can result in counterfeit integrated circuits (ICs). Not only does this book provide an assessment of the current counterfeiting problems facing both the public and private sectors, it also offers practical, real-world solutions for combatting this substantial threat. · Helps beginners and practitioners in the field by providing a comprehensive background on the counterfeiting problem; · Presents innovative taxonomies for counterfeit types, test methods, and counterfeit defects, which allows for a detailed analysis of counterfeiting and its mitigation; · Provides step-by-step solutions for detecting different types of counterfeit ICs; · Offers pragmatic and practice-oriented, realistic solutions to counterfeit IC detection and avoidance, for industry and government.

Book RF CMOS Oscillators for Modern Wireless Applications

Download or read book RF CMOS Oscillators for Modern Wireless Applications written by Masoud Babaie and published by River Publishers Circuits and. This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable.

Book Hot Carrier Reliability of MOS VLSI Circuits

Download or read book Hot Carrier Reliability of MOS VLSI Circuits written by Yusuf Leblebici and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the complexity and the density of VLSI chips increase with shrinking design rules, the evaluation of long-term reliability of MOS VLSI circuits is becoming an important problem. The assessment and improvement of reliability on the circuit level should be based on both the failure mode analysis and the basic understanding of the physical failure mechanisms observed in integrated circuits. Hot-carrier induced degrada tion of MOS transistor characteristics is one of the primary mechanisms affecting the long-term reliability of MOS VLSI circuits. It is likely to become even more important in future generation chips, since the down ward scaling of transistor dimensions without proportional scaling of the operating voltage aggravates this problem. A thorough understanding of the physical mechanisms leading to hot-carrier related degradation of MOS transistors is a prerequisite for accurate circuit reliability evaluation. It is also being recognized that important reliability concerns other than the post-manufacture reliability qualification need to be addressed rigorously early in the design phase. The development and use of accurate reliability simulation tools are therefore crucial for early assessment and improvement of circuit reliability : Once the long-term reliability of the circuit is estimated through simulation, the results can be compared with predetermined reliability specifications or limits. If the predicted reliability does not satisfy the requirements, appropriate design modifications may be carried out to improve the resistance of the devices to degradation.

Book Microwave and RF Design

Download or read book Microwave and RF Design written by Michael Bernard Steer and published by SciTech Publishing. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Microwave & RF Design: A Systems Approach, 2nd Edition is a comprehensive treatment of the subject for advanced undergrad and graduate students (as well as professionals), focusing on the systems and emphasizing design. Components are covered in depth, but always with the idea of how they fit into modern radio, radar, and sensor systems. Advanced components and design techniques are presented along with a thoroughly modern treatment of traditional microwave theory and techniques."--pub. desc.