EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reversible Crystal Plasticity

    Book Details:
  • Author : Vladimir Boyko
  • Publisher : Springer Science & Business Media
  • Release : 1997-05-09
  • ISBN : 9780883188699
  • Pages : 328 pages

Download or read book Reversible Crystal Plasticity written by Vladimir Boyko and published by Springer Science & Business Media. This book was released on 1997-05-09 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market: Research scientists and students in materials science, physical metallurgy, and solid state physics. This detailed monograph presents the theory of reversible plasticity as a new direction of development in crystal physics. It features a unique integration of traditional concepts and new studies of high- temperature superconductors, plus in-depth analyses of various related phenomena. Among the topics discussed are elastic twinning (discovered by Dr. Garber), thermoelastic martensite transformation, superelasticity, shape memory effects, the domain structure of ferroelastics, and elastic aftereffect. Partial Contents: 1. Transformation of Dislocations. Dislocation Description of a Phase Transformation Front. 2. Dislocation Theory of Elastic Twinning. Twinning of Crystals: Principal Definitions. 3. Statics and Dynamics of Elastic Twinning. Discovery of Elastic Twinning. Verification of the Validity of the Static Theory in a Description of the Macroscopic Behavior of an Elastic Twin. 4. Thermoelastic Martensitic Transformation. Martensitic Transformation: a Diffusionless Process of Rebuilding the Crystal Lattice. 5. Superelasticity and the Shape Memory Effect. Main Characteristics of Superelasticity and Shape Memory Effects. 6. Reversible Plasticity of Ferroelastics. Ferroelastics: Main Definitions. 7. Investigation of Reversible Plasticity of Crystals by the Acoustic Emission Method. Emission of Sound by Moving Dislocations andTheir Pileups. Methods Used in Experimental Investigations of the Acoustic Emission Generated by a SingleTwin. Acoustic Emission Associated with Elastic Twinning. 8. Influence of Reversible Plasticity of Superconductors on Their Physical Properties. Reversible Changes in the Parameters of Traditional Superconductors under the Action of Elastic Stresses. Influence of Magnetic Fields on Reversible Changes in the Parameters

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Dislocation Mechanism Based Crystal Plasticity

Download or read book Dislocation Mechanism Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Book Crystal Plasticity

    Book Details:
  • Author : Wojciech Polkowski
  • Publisher : MDPI
  • Release : 2021-04-27
  • ISBN : 3036508384
  • Pages : 438 pages

Download or read book Crystal Plasticity written by Wojciech Polkowski and published by MDPI. This book was released on 2021-04-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.

Book Strengthening Mechanisms in Crystal Plasticity

Download or read book Strengthening Mechanisms in Crystal Plasticity written by Ali Argon and published by Oxford University Press on Demand. This book was released on 2008 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.

Book Surface Effects in Crystal Plasticity

Download or read book Surface Effects in Crystal Plasticity written by R.M. Latanision and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micro Macro Interactions

    Book Details:
  • Author : Albrecht Bertram
  • Publisher : Springer Science & Business Media
  • Release : 2008-10-23
  • ISBN : 354085715X
  • Pages : 301 pages

Download or read book Micro Macro Interactions written by Albrecht Bertram and published by Springer Science & Business Media. This book was released on 2008-10-23 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.

Book Applied Nanoindentation in Advanced Materials

Download or read book Applied Nanoindentation in Advanced Materials written by Atul Tiwari and published by John Wiley & Sons. This book was released on 2017-10-30 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.

Book Introduction to Ferroic Materials

Download or read book Introduction to Ferroic Materials written by Vinod Wadhawan and published by CRC Press. This book was released on 2000-12-21 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroic materials are important, not only because of the improved understanding of condensed matter, but also because of their present and potential device applications. This book presents a unified description of ferroic materials at an introductory level, with the unifying factor being the occurrence of nondisruptive phase transitions in crystals

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1969-05 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Some Developments in Crystal Plasticity

Download or read book Some Developments in Crystal Plasticity written by Arun R. Srinivasa and published by . This book was released on 1991 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids

Download or read book Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids written by John D. Clayton and published by Springer. This book was released on 2019-05-17 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.

Book Smart Structures

    Book Details:
  • Author : Vinod K. Wadhawan
  • Publisher : Oxford University Press
  • Release : 2007-10-18
  • ISBN : 0199229171
  • Pages : 364 pages

Download or read book Smart Structures written by Vinod K. Wadhawan and published by Oxford University Press. This book was released on 2007-10-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smartness is often associated with living beings, as they can adapt themselves to changing situations. Artificial smart structures are designed to mimic biological structures to a small or large extent. This book gives a comprehensive account of how this can be done. It will be of interest to students and professionals in science and engineering.

Book Collective Effects in Condensed Matter Physics

Download or read book Collective Effects in Condensed Matter Physics written by Vladimir V. Kiselev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers a concise overview of the theoretical description of various collective phenomena in condensed matter physics. These effects include the basic electronic structure in solid state physics, lattice vibrations, superconductivity, light-matter interaction and more advanced topics such as martensitic transistions.

Book Thermally Activated Mechanisms in Crystal Plasticity

Download or read book Thermally Activated Mechanisms in Crystal Plasticity written by D. Caillard and published by Elsevier. This book was released on 2003-09-08 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: KEY FEATURES: A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.

Book Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals

Download or read book Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals written by Kuhn, Jannick and published by KIT Scientific Publishing. This book was released on 2023-04-04 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational homogenization permits to capture the influence of the microstructure on the cyclic mechanical behavior of polycrystalline metals. In this work we investigate methods to compute Laguerre tessellations as computational cells of polycrystalline microstructures, propose a new method to assign crystallographic orientations to the Laguerre cells and use Bayesian optimization to find suitable parameters for the underlying micromechanical model from macroscopic experiments.

Book Plasticity

    Book Details:
  • Author : Ronaldo I. Borja
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-14
  • ISBN : 3642385478
  • Pages : 261 pages

Download or read book Plasticity written by Ronaldo I. Borja and published by Springer Science & Business Media. This book was released on 2013-06-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.