EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Representations of the Rotation and Lorentz Groups and Their Applications

Download or read book Representations of the Rotation and Lorentz Groups and Their Applications written by I. M. Gelfand and published by Courier Dover Publications. This book was released on 2018-04-18 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph on the description and study of representations of the rotation group of three-dimensional space and of the Lorentz group features advanced topics and techniques crucial to many areas of modern theoretical physics. Prerequisites include a familiarity with the differential and integral calculus of several variables and the fundamentals of linear algebra. Suitable for advanced undergraduate and graduate students in mathematical physics, the book is also designed for mathematicians studying the representations of Lie groups, for whom it can serve as an introduction to the general theory of representation. The treatment encompasses all the basic material of the theory of representations used in quantum mechanics. The two-part approach begins with representations of the group of rotations of three-dimensional space, analyzing the rotation group and its representations. The second part, covering representations of the Lorentz group, includes an exploration of relativistic-invariant equations. The text concludes with three helpful supplements and a bibliography.

Book Group Theory and General Relativity

Download or read book Group Theory and General Relativity written by Moshe Carmeli and published by World Scientific. This book was released on 2000 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups -- particularly the Lorentz and the SL(2, C) groups -- to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory.

Book The Rotation and Lorentz Groups and Their Representations for Physicists

Download or read book The Rotation and Lorentz Groups and Their Representations for Physicists written by K. Srinivasa Rao and published by John Wiley & Sons. This book was released on 1988 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a detailed, self-contained work on the rotation and Lorentz groups and their representations. Treatment of the structure of the groups is elaborate and includes many new results only recently published in journals. The chapter on linear vector spaces is exhaustive yet clear, and the book highlights the fact that all results of the orthosynchronous proper Lorentz group may be obtained from those of the rotation group via complex quaternions. The approach is unified, and special properties and exceptional cases are addressed.

Book Physics of the Lorentz Group

Download or read book Physics of the Lorentz Group written by Sibel Baskal and published by Morgan & Claypool Publishers. This book was released on 2015-11-01 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.

Book Rotations  Quaternions  and Double Groups

Download or read book Rotations Quaternions and Double Groups written by Simon L. Altmann and published by Courier Corporation. This book was released on 2013-04-09 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary.

Book Applications of Finite Groups

Download or read book Applications of Finite Groups written by J. S. Lomont and published by Academic Press. This book was released on 2014-05-12 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Finite Groups focuses on the applications of finite groups to problems of physics, including representation theory, crystals, wave equations, and nuclear and molecular structures. The book first elaborates on matrices, groups, and representations. Topics include abstract properties, applications, matrix groups, key theorem of representation theory, properties of character tables, simply reducible groups, tensors and invariants, and representations generated by functions. The text then examines applications and subgroups and representations, as well as subduced and induced representations, fermion annihilation and creation operators, crystallographic point groups, proportionality tensors in crystals, and nonrelativistic wave equations. The publication takes a look at space group representations and energy bands, symmetric groups, and applications. Topics include molecular and nuclear structures, multiplet splitting in crystalline electric fields, construction of irreducible representations of the symmetric groups, and reality of representations. The manuscript is a dependable source of data for physicists and researchers interested in the applications of finite groups.

Book Theory and Applications of the Poincar   Group

Download or read book Theory and Applications of the Poincar Group written by Young Suh Kim and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.

Book Representations of the Rotation and Lorentz Groups

Download or read book Representations of the Rotation and Lorentz Groups written by Moshe Carmeli and published by . This book was released on 1976 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Group And Representation Theory

    Book Details:
  • Author : Ioannis John Demetrius Vergados
  • Publisher : World Scientific Publishing Company
  • Release : 2016-12-29
  • ISBN : 9813202467
  • Pages : 349 pages

Download or read book Group And Representation Theory written by Ioannis John Demetrius Vergados and published by World Scientific Publishing Company. This book was released on 2016-12-29 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables.This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elements of the algebra on uniquely specified highest weight states. Alternatively these representations can be described in terms of tensors labeled by the Young tableaux associated with the discrete symmetry Sn. The connection between the Young tableaux and the Dynkin weights is also discussed. It is also shown that in many physical systems the quantum numbers needed to specify the physical states involve not only the highest symmetry but also a number of sub-symmetries contained in them. This leads to the study of the role of subalgebras and in particular the possible maximal subalgebras. In many applications the physical system can be considered as composed of subsystems obeying a given symmetry. In such cases the reduction of the Kronecker product of irreducible representations of classical and special algebras becomes relevant and is discussed in some detail. The method of obtaining the relevant Clebsch-Gordan (C-G) coefficients for such algebras is discussed and some relevant algorithms are provided. In some simple cases suitable numerical tables of C-G are also included.The above exposition contains many examples, both as illustrations of the main ideas as well as well motivated applications. To this end two appendices of 51 pages — 11 tables in Appendix A, summarizing the material discussed in the main text and 39 tables in Appendix B containing results of more sophisticated examples are supplied. Reference to the tables is given in the main text and a guide to the appropriate section of the main text is given in the tables.

Book Lie Groups  Lie Algebras  and Some of Their Applications

Download or read book Lie Groups Lie Algebras and Some of Their Applications written by Robert Gilmore and published by Courier Corporation. This book was released on 2012-05-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Book The Application of Group Theory in Physics

Download or read book The Application of Group Theory in Physics written by Grigoriĭ I︠A︡kovlevich Li︠u︡barskiĭ and published by Reader's Digest Young Families. This book was released on 1960 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of the theory of groups -- Some specific groups -- The theory of group representations -- Operations with group representations -- Representations of certain groups -- Small oscillations of symmetrical systems -- Second order phase transitions -- Crystals -- Infinite groups -- Representations of the rotation groups in two and three dimensions and of the full orthogonal group -- Clebsch-Gordon and Racah coefficients -- The Schrödinger equation -- Equations invariant under the Euclidean group of motions in space -- Absorption and Raman scattering of light -- Representations of the Lorentz group -- Relativistically invariant equations -- Nuclear reactions.

Book Representations of the Rotation and Lorentz Groups and Their Applications

Download or read book Representations of the Rotation and Lorentz Groups and Their Applications written by Izrailʹ Moiseevich Gelʹfand and published by . This book was released on 1963 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applications of Group Theory in Quantum Mechanics

Download or read book Applications of Group Theory in Quantum Mechanics written by M. I. Petrashen and published by Courier Corporation. This book was released on 2013-01-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geared toward postgraduate students, theoretical physicists, and researchers, this advanced text explores the role of modern group-theoretical methods in quantum theory. The authors based their text on a physics course they taught at a prominent Soviet university. Readers will find it a lucid guide to group theory and matrix representations that develops concepts to the level required for applications. The text's main focus rests upon point and space groups, with applications to electronic and vibrational states. Additional topics include continuous rotation groups, permutation groups, and Lorentz groups. A number of problems involve studies of the symmetry properties of the Schroedinger wave function, as well as the explanation of "additional" degeneracy in the Coulomb field and certain subjects in solid-state physics. The text concludes with an instructive account of problems related to the conditions for relativistic invariance in quantum theory.

Book Relativity  Groups  Particles

    Book Details:
  • Author : Roman U. Sexl
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3709162343
  • Pages : 388 pages

Download or read book Relativity Groups Particles written by Roman U. Sexl and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook bridges the gap between the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory. After explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - illustrated by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to the conceptual clarification.

Book Groups  Representations and Physics

Download or read book Groups Representations and Physics written by H.F Jones and published by CRC Press. This book was released on 2020-07-14 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.

Book Symmetries and Group Theory in Particle Physics

Download or read book Symmetries and Group Theory in Particle Physics written by Giovanni Costa and published by Springer. This book was released on 2012-02-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.

Book Lie Groups and Algebras with Applications to Physics  Geometry  and Mechanics

Download or read book Lie Groups and Algebras with Applications to Physics Geometry and Mechanics written by D.H. Sattinger and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.