EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reliable Uncertainty Quantification Using Adaptive Stochastic Discontinuous Galerkin Methods

Download or read book Reliable Uncertainty Quantification Using Adaptive Stochastic Discontinuous Galerkin Methods written by Geoffrey Donoghue and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a reliable and efficient algorithm for combined model uncertainty and discretization error quantification of partial differential equation based simulations. Specifically, we present an adaptive solution method for stochastic partial differential equations that (i) propagates the effect of prescribed input parameter uncertainties to the output quantity of interest and (ii) effectively estimates and controls the discretization errors associated with the propagation process. Our framework builds on a high-order discontinuous Galerkin method, element-wise localized polynomial chaos expansions, the dual-weighted residual error estimate, and a spatio-stochastic anisotropic adaptation strategy. We present \textit{a priori} error bounds for our spatio-stochastic approximation and demonstrate the effectiveness of the formulation for a sample two-dimensional scalar equation, as well as compressible flow problems with uncertainties in flow conditions.

Book Stochastic Systems

Download or read book Stochastic Systems written by Mircea Grigoriu and published by Springer Science & Business Media. This book was released on 2012-05-15 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.

Book Uncertainty Quantification

Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

Book Uncertainty Quantification and Numerical Methods for Conservation Laws

Download or read book Uncertainty Quantification and Numerical Methods for Conservation Laws written by Mass Per Pettersson and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansion approach where the solution is represented as a generalized Fourier series of stochastic basis functions, e.g. orthogonal polynomials or wavelets. The stochastic Galerkin method is used to project the governing partial differential equation onto the stochastic basis functions to obtain an extended deterministic system. The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain viscosity. We investigate well-posedness, monotonicity and stability for the stochastic Galerkin system. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability. We investigate the impact of the total spatial operator on the convergence to steady-state. Next we apply the stochastic Galerkin method to Burgers' equation with uncertain boundary conditions. An analysis of the truncated polynomial chaos system presents a qualitative description of the development of the solution over time. An analytical solution is derived and the true polynomial chaos coefficients are shown to be smooth, while the corresponding coefficients of the truncated stochastic Galerkin formulation are shown to be discontinuous. We discuss the problematic implications of the lack of known boundary data and possible ways of imposing stable and accurate boundary conditions. We present a new fully intrusive method for the Euler equations subject to uncertainty based on a Roe variable transformation. The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, it is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. A multiwavelet basis that can handle discontinuities in a robust way is used. Finally, we investigate a two-phase flow problem. Based on regularity analysis of the generalized polynomial chaos coefficients, we present a hybrid method where solution regions of varying smoothness are coupled weakly through interfaces. In this way, we couple smooth solutions solved with high-order finite difference methods with non-smooth solutions solved for with shock-capturing methods.

Book Uncertainty Quantification for Hyperbolic and Kinetic Equations

Download or read book Uncertainty Quantification for Hyperbolic and Kinetic Equations written by Shi Jin and published by Springer. This book was released on 2018-03-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

Book Quantification of Uncertainty  Improving Efficiency and Technology

Download or read book Quantification of Uncertainty Improving Efficiency and Technology written by Marta D'Elia and published by Springer Nature. This book was released on 2020-07-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.

Book Uncertainty Quantification for Integrated Circuits and Microelectrornechanical Systems

Download or read book Uncertainty Quantification for Integrated Circuits and Microelectrornechanical Systems written by and published by . This book was released on 2015 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty quantification has become an important task and an emerging topic in many engineering fields. Uncertainties can be caused by many factors, including inaccurate component models, the stochastic nature of some design parameters, external environmental fluctuations (e.g., temperature variation), measurement noise, and so forth. In order to enable robust engineering design and optimal decision making, efficient stochastic solvers are highly desired to quantify the effects of uncertainties on the performance of complex engineering designs. Process variations have become increasingly important in the semiconductor industry due to the shrinking of micro- and nano-scale devices. Such uncertainties have led to remarkable performance variations at both circuit and system levels, and they cannot be ignored any more in the design of nano-scale integrated circuits and microelectromechanical systems (MEMS). In order to simulate the resulting stochastic behaviors, Monte Carlo techniques have been employed in SPICE-like simulators for decades, and they still remain the mainstream techniques in this community. Despite of their ease of implementation, Monte Carlo simulators are often too time-consuming due to the huge number of repeated simulations. This thesis reports the development of several stochastic spectral methods to accelerate the uncertainty quantification of integrated circuits and MEMS. Stochastic spectral methods have emerged as a promising alternative to Monte Carlo in many engineering applications, but their performance may degrade significantly as the parameter dimensionality increases. In this work, we develop several efficient stochastic simulation algorithms for various integrated circuits and MEMS designs, including problems with both low-dimensional and high-dimensional random parameters, as well as complex systems with hierarchical design structures. The first part of this thesis reports a novel stochastic-testing circuit/MEMS simulator as well as its advanced simulation engine for radio-frequency (RF) circuits. The proposed stochastic testing can be regarded as a hybrid variant of stochastic Galerkin and stochastic collocation: it is an intrusive simulator with decoupled computation and adaptive time stepping inside the solver. As a result, our simulator gains remarkable speedup over standard stochastic spectral methods and Monte Carlo in the DC, transient and AC simulation of various analog, digital and RF integrated circuits. An advanced uncertainty quantification algorithm for the periodic steady states (or limit cycles) of analog/RF circuits is further developed by combining stochastic testing and shooting Newton. Our simulator is verified by various integrated circuits, showing 102 x to 103 x speedup over Monte Carlo when a similar level of accuracy is required. The second part of this thesis presents two approaches for hierarchical uncertainty quantification. In hierarchical uncertainty quantification, we propose to employ stochastic spectral methods at different design hierarchies to simulate efficiently complex systems. The key idea is to ignore the multiple random parameters inside each subsystem and to treat each subsystem as a single random parameter. The main difficulty is to recompute the basis functions and quadrature rules that are required for the high-level uncertainty quantification, since the density function of an obtained low-level surrogate model is generally unknown. In order to address this issue, the first proposed algorithm computes new basis functions and quadrature points in the low-level (and typically high-dimensional) parameter space. This approach is very accurate; however it may suffer from the curse of dimensionality. In order to handle high-dimensional problems, a sparse stochastic testing simulator based on analysis of variance (ANOVA) is developed to accelerate the low-level simulation. At the high-level, a fast algorithm based on tensor decompositions is proposed to compute the basis functions and Gauss quadrature points. Our algorithm is verified by some MEMS/IC co-design examples with both low-dimensional and high-dimensional (up to 184) random parameters, showing about 102 x speedup over the state-of-the-art techniques. The second proposed hierarchical uncertainty quantification technique instead constructs a density function for each subsystem by some monotonic interpolation schemes. This approach is capable of handling general low-level possibly non-smooth surrogate models, and it allows computing new basis functions and quadrature points in an analytical way. The computational techniques developed in this thesis are based on stochastic differential algebraic equations, but the results can also be applied to many other engineering problems (e.g., silicon photonics, heat transfer problems, fluid dynamics, electromagnetics and power systems). There exist lots of research opportunities in this direction. Important open problems include how to solve high-dimensional problems (by both deterministic and randomized algorithms), how to deal with discontinuous response surfaces, how to handle correlated non-Gaussian random variables, how to couple noise and random parameters in uncertainty quantification, how to deal with correlated and time-dependent subsystems in hierarchical uncertainty quantification, and so forth.

Book Error Control  Adaptive Discretizations  and Applications  Part 1

Download or read book Error Control Adaptive Discretizations and Applications Part 1 written by and published by Elsevier. This book was released on 2024-06-29 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. Covers multi-scale modeling Includes updates on data-driven modeling Presents the latest information on large deformations of multi-scale materials

Book Uncertainty Quantification and Stochastic Modeling with Matlab

Download or read book Uncertainty Quantification and Stochastic Modeling with Matlab written by Eduardo Souza de Cursi and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study

Book Handbook of Uncertainty Quantification

Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Book An Efficient Computational Framework for Uncertainty Quantification in Multiscale Systems

Download or read book An Efficient Computational Framework for Uncertainty Quantification in Multiscale Systems written by Xiang Ma and published by . This book was released on 2011 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: To accurately predict the performance of physical systems, it becomes essential for one to include the effects of input uncertainties into the model system and understand how they propagate and alter the final solution. The presence of uncertainties can be modeled in the system through reformulation of the governing equations as stochastic partial differential equations (SPDEs). The spectral stochastic finite element method (SSFEM) and stochastic collocation methods are the most popular simulation methods for SPDEs. However, both methods utilize global polynomials in the stochastic space. Thus when there are steep gradients or finite discontinuities in the stochastic space, these methods converge slowly or even fail to converge. In order to resolve the above mentioned issues, an adaptive sparse grid collocation (ASGC) strategy is developed using piecewise multi-linear hierarchical basis functions. Hierarchical surplus is used as an error indicator to automatically detect the discontinuity region in the stochastic space and adaptively refine the collocation points in this region. However, this method is limited to a moderate number of random variables. To address the solution of high-dimensional stochastic problems, a computational methodology is further introduced that utilizes the High Dimensional Model Representation (HDMR) technique in the stochastic space to represent the model output as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. An adaptive version of HDMR is also developed to automatically detect the important dimensions and construct higherorder terms using only the important dimensions. The ASGC is integrated with HDMR to solve the resulting sub-problems. Uncertainty quantification for fluid transport in porous media in the presence of both stochastic permeability and multiple scales is addressed using the developed HDMR framework. In order to capture the small scale heterogeneity, a new mixed multiscale finite element method is developed within the framework of the heterogeneous multiscale method in the spatial domain. Several numerical examples are considered to examine the accuracy of the multiscale and stochastic frameworks developed. A summary of suggestions for future research in the area of stochastic multiscale modeling are given at the end of the thesis.

Book Novel Uncertainty Quantification Techniques for Problems Described by Stochastic Partial Differential Equations

Download or read book Novel Uncertainty Quantification Techniques for Problems Described by Stochastic Partial Differential Equations written by Peng Chen and published by . This book was released on 2014 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty propagation (UP) in physical systems governed by PDEs is a challenging problem. This thesis addresses the development of a number of innovative techniques that emphasize the need for high-dimensionality modeling, resolving discontinuities in the stochastic space and considering the computational expense of forward solvers. Both Bayesian and non-Bayesian approaches are considered. Applications demonstrating the developed techniques are investigated in the context of flow in porous media and reservoir engineering applications. An adaptive locally weighted projection method (ALWPR) is firstly developed. It adaptively selects the needed runs of the forward solver (data collection) to maximize the predictive capability of the method. The methodology effectively learns the local features and accurately quantifies the uncertainty in the prediction of the statistics. It could provide predictions and confidence intervals at any query input and can deal with multi-output responses. A probabilistic graphical model framework for uncertainty quantification is next introduced. The high dimensionality issue of the input is addressed by a local model reduction framework. Then the conditional distribution of the multi-output responses on the low dimensional representation of the input field is factorized into a product of local potential functions that are represented non-parametrically. A nonparametric loopy belief propagation algorithm is developed for studying uncertainty quantification directly on the graph. The nonparametric nature of the model is able to efficiently capture non-Gaussian features of the response. Finally an infinite mixture of Multi-output Gaussian Process (MGP) models is presented to effectively deal with many of the difficulties of current UQ methods. This model involves an infinite mixture of MGP's using Dirichlet process priors and is trained using Variational Bayesian Inference. The Bayesian nature of the model allows for the quantification of the uncertainties due to the limited number of simulations. The automatic detection of the mixture components by the Variational Inference algorithm is able to capture discontinuities and localized features without adhering to ad hoc constructions. Finally, correlations between the components of multi-variate responses are captured by the underlying MGP model in a natural way. A summary of suggestions for future research in the area of uncertainty quantification field are given at the end of the thesis.

Book An Adaptive Stochastic Galerkin Method

Download or read book An Adaptive Stochastic Galerkin Method written by Claude Jeffrey Gittelson and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectral Methods for Uncertainty Quantification

Download or read book Spectral Methods for Uncertainty Quantification written by Olivier Le Maitre and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.

Book Introduction to Uncertainty Quantification

Download or read book Introduction to Uncertainty Quantification written by T.J. Sullivan and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation, and numerous application areas in science and engineering. This text provides a framework in which the main objectives of the field of uncertainty quantification are defined, and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favourite problems to understand their strengths and weaknesses, also making the text suitable as a self-study. This text is designed as an introduction to uncertainty quantification for senior undergraduate and graduate students with a mathematical or statistical background, and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

Book Scaling of Intrusive Stochastic Collocation and Stochastic Galerkin Methods for Uncertainty Quantification in Monte Carlo Particle Transport

Download or read book Scaling of Intrusive Stochastic Collocation and Stochastic Galerkin Methods for Uncertainty Quantification in Monte Carlo Particle Transport written by and published by . This book was released on 2015 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: