Download or read book Relaxation retardation Model for Fully Developed Turbulent Channel Flow written by Klaus Weispfennig and published by . This book was released on 1997 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Relaxation Model for Homogeneous Turbulent Flows written by Steven M. Parks and published by . This book was released on 1997 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1998 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1997 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1973 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1973 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Physics Briefs written by and published by . This book was released on 1994-07 with total page 1244 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Theoretical Chemical Engineering Abstracts written by and published by . This book was released on 1986 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analysis of Turbulent Flows with Computer Programs written by Tuncer Cebeci and published by Elsevier. This book was released on 2004 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Computation of Turbulent Flows has been written by one of the most prolific authors in the field of CFD. Professor of aerodynamics at SUPAERO and director of DMAE at ONERA, the author calls on both his academic and industrial experience when presenting this work. The field of CFD is strongly represented by the following corporate companies; Boeing; Airbus; Thales; United Technologies and General Electric, government bodies and academic institutions also have a strong interest in this exciting field. Each chapter has also been specifically constructed to constitute as an advanced textbook for PhD candidates working in the field of CFD, making this book essential reading for researchers, practitioners in industry and MSc and MEng students. * A broad overview of the development and application of Computational Fluid Dynamics (CFD), with real applications to industry * A Free CD-Rom which contains computer program's suitable for solving non-linear equations which arise in modeling turbulent flows * Professor Cebeci has published over 200 technical papers and 14 books, a world authority in the field of CFD
Download or read book Fifteenth International Conference on Numerical Methods in Fluid Dynamics written by Paul Kutler and published by Springer. This book was released on 1997-09-18 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a wide area of topics, from fundamental theories to industrial applications. It serves as a useful reference for everyone interested in computational modeling of partial differential equations pertinent primarily to aeronautical applications. The reader will find three survey articles on the present state of the art in numerical simulation of the transition to turbulence, in design optimization of aircraft configurations, and in turbulence modeling. These are followed by carefully selected and refereed articles on algorithms and their applications, on design methods, on grid adaption techniques, on direct numerical simulations, and on parallel computing, and much more.
Download or read book Hydrodynamic Forces written by Eduard Naudascher and published by Routledge. This book was released on 2017-11-13 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Produced for the International Association for Hydraulic Research, this monograph covers fluctuating and mean hydrodynamic forces, hydrodynamic forces on high-head gates, and hydrodynamic forces on low-head gates i.e. only the forces induced by flow incident or past the structure.
Download or read book Stability and Transition in Shear Flows written by Peter J. Schmid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.
Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.
Download or read book Modelling Fluid Flow written by János Vad and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
Download or read book Physical and Computational Aspects of Convective Heat Transfer written by T. Cebeci and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.