EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linear Models with Python

Download or read book Linear Models with Python written by Julian J. Faraway and published by CRC Press. This book was released on 2021-01-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.

Book Regression Analysis with Python

Download or read book Regression Analysis with Python written by Luca Massaron and published by Packt Publishing Ltd. This book was released on 2016-02-29 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the art of regression analysis with Python About This Book Become competent at implementing regression analysis in Python Solve some of the complex data science problems related to predicting outcomes Get to grips with various types of regression for effective data analysis Who This Book Is For The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science. What You Will Learn Format a dataset for regression and evaluate its performance Apply multiple linear regression to real-world problems Learn to classify training points Create an observation matrix, using different techniques of data analysis and cleaning Apply several techniques to decrease (and eventually fix) any overfitting problem Learn to scale linear models to a big dataset and deal with incremental data In Detail Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer. Style and approach This is a practical tutorial-based book. You will be given an example problem and then supplied with the relevant code and how to walk through it. The details are provided in a step by step manner, followed by a thorough explanation of the math underlying the solution. This approach will help you leverage your own data using the same techniques.

Book Learn Data Science from Scratch

Download or read book Learn Data Science from Scratch written by Pratheerth Padman and published by BPB Publications. This book was released on 2024-02-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turn raw data into meaningful solutions KEY FEATURES ● Complete guide to master data science basics. ● Practical and hands-on examples in ML, deep learning, and NLP. ● Drive innovation and improve decision making through the power of data. DESCRIPTION Learn Data Science from Scratch equips you with the essential tools and techniques, from Python libraries to machine learning algorithms, to tackle real-world problems and make informed decisions. This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into machine learning algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision making. By the end of this book, you will be well-equipped with the essential skills and knowledge to navigate the exciting world of data science. You will be able to collect, analyze, and interpret data, build and evaluate machine learning models, and effectively communicate your findings, making you a valuable asset in any data-driven environment. WHAT YOU WILL LEARN ● Master key data science tools like Python, NumPy, Pandas, and more. ● Build a strong foundation in statistics and probability for data analysis. ● Learn and apply machine learning, from regression to deep learning. ● Expertise in NLP and recommender systems for advanced analytics. ● End-to-end data project from data collection to model deployment, with planning and execution. WHO THIS BOOK IS FOR This book is ideal for beginners with a basic understanding of programming, particularly in Python, and a foundational knowledge of mathematics. It is well-suited for aspiring data scientists and analysts. TABLE OF CONTENTS 1. Unraveling the Data Science Universe: An Introduction 2. Essential Python Libraries and Tools for Data Science 3. Statistics and Probability Essentials for Data Science 4. Data Mining Expedition: Web Scraping and Data Collection Techniques 5. Painting with Data: Exploration and Visualization 6. Data Alchemy: Cleaning and Preprocessing Raw Data 7. Machine Learning Magic: An Introduction to Predictive Modeling 8. Exploring Regression: Linear, Logistic, and Advanced Methods 9. Unveiling Patterns with k-Nearest Neighbors and Naïve Bayes 10. Exploring Tree-Based Models: Decision Trees to Gradient Boosting 11. Support Vector Machines: Simplifying Complexity 12. Dimensionality Reduction: From PCA to Advanced Methods 13. Unlocking Unsupervised Learning 14. The Essence of Neural Networks and Deep Learning 15. Word Play: Text Analytics and Natural Language Processing 16. Crafting Recommender Systems 17. Data Storage Mastery: Databases and Efficient Data Management 18. Data Science in Action: A Comprehensive End-to-end Project

Book Machine Learning With Python  Theory And Applications

Download or read book Machine Learning With Python Theory And Applications written by Gui-rong Liu and published by World Scientific. This book was released on 2022-12-05 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning (ML) has become a very important area of research widely used in various industries.This compendium introduces the basic concepts, fundamental theories, essential computational techniques, codes, and applications related to ML models. With a strong foundation, one can comfortably learn related topics, methods, and algorithms. Most importantly, readers with strong fundamentals can even develop innovative and more effective machine models for his/her problems. The book is written to achieve this goal.The useful reference text benefits professionals, academics, researchers, graduate and undergraduate students in AI, ML and neural networks.

Book Modeling Techniques in Predictive Analytics with Python and R

Download or read book Modeling Techniques in Predictive Analytics with Python and R written by Thomas W. Miller and published by FT Press. This book was released on 2014-09-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Book Statistical Application Development with R and Python

Download or read book Statistical Application Development with R and Python written by Prabhanjan Narayanachar Tattar and published by Packt Publishing Ltd. This book was released on 2017-08-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software Implementation Illustrated with R and Python About This Book Learn the nature of data through software which takes the preliminary concepts right away using R and Python. Understand data modeling and visualization to perform efficient statistical analysis with this guide. Get well versed with techniques such as regression, clustering, classification, support vector machines and much more to learn the fundamentals of modern statistics. Who This Book Is For If you want to have a brief understanding of the nature of data and perform advanced statistical analysis using both R and Python, then this book is what you need. No prior knowledge is required. Aspiring data scientist, R users trying to learn Python and vice versa What You Will Learn Learn the nature of data through software with preliminary concepts right away in R Read data from various sources and export the R output to other software Perform effective data visualization with the nature of variables and rich alternative options Do exploratory data analysis for useful first sight understanding building up to the right attitude towards effective inference Learn statistical inference through simulation combining the classical inference and modern computational power Delve deep into regression models such as linear and logistic for continuous and discrete regressands for forming the fundamentals of modern statistics Introduce yourself to CART – a machine learning tool which is very useful when the data has an intrinsic nonlinearity In Detail Statistical Analysis involves collecting and examining data to describe the nature of data that needs to be analyzed. It helps you explore the relation of data and build models to make better decisions. This book explores statistical concepts along with R and Python, which are well integrated from the word go. Almost every concept has an R code going with it which exemplifies the strength of R and applications. The R code and programs have been further strengthened with equivalent Python programs. Thus, you will first understand the data characteristics, descriptive statistics and the exploratory attitude, which will give you firm footing of data analysis. Statistical inference will complete the technical footing of statistical methods. Regression, linear, logistic modeling, and CART, builds the essential toolkit. This will help you complete complex problems in the real world. You will begin with a brief understanding of the nature of data and end with modern and advanced statistical models like CART. Every step is taken with DATA and R code, and further enhanced by Python. The data analysis journey begins with exploratory analysis, which is more than simple, descriptive, data summaries. You will then apply linear regression modeling, and end with logistic regression, CART, and spatial statistics. By the end of this book you will be able to apply your statistical learning in major domains at work or in your projects. Style and approach Developing better and smarter ways to analyze data. Making better decisions/future predictions. Learn how to explore, visualize and perform statistical analysis. Better and efficient statistical and computational methods. Perform practical examples to master your learning

Book Machine Learning Theory and Applications

Download or read book Machine Learning Theory and Applications written by Xavier Vasques and published by John Wiley & Sons. This book was released on 2024-01-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Theory and Applications Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps). Additional topics covered in Machine Learning Theory and Applications include: Current use cases of AI, including making predictions, recognizing images and speech, performing medical diagnoses, creating intelligent supply chains, natural language processing, and much more Classical and quantum machine learning algorithms such as quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass classification, quantum neural networks, and quantum generative adversarial networks (qGANs) Different ways to manipulate data, such as handling missing data, analyzing categorical data, or processing time-related data Feature rescaling, extraction, and selection, and how to put your trained models to life and production through containerized applications Machine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra.

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book Handbook of HydroInformatics

Download or read book Handbook of HydroInformatics written by Saeid Eslamian and published by Elsevier. This book was released on 2022-11-30 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic Soft-Computing Techniques is the first volume of the three, in the Handbook of HydroInformatics series.? Through this comprehensive, 34-chapters work, the contributors explore the difference between traditional computing, also known as hard computing, and soft computing, which is based on the importance given to issues like precision, certainty and rigor. The chapters go on to define fundamentally classic soft-computing techniques such as Artificial Neural Network, Fuzzy Logic, Genetic Algorithm, Supporting Vector Machine, Ant-Colony Based Simulation, Bat Algorithm, Decision Tree Algorithm, Firefly Algorithm, Fish Habitat Analysis, Game Theory, Hybrid Cuckoo–Harmony Search Algorithm, Honey-Bee Mating Optimization, Imperialist Competitive Algorithm, Relevance Vector Machine, etc.?It is a fully comprehensive handbook providing all the information needed around classic soft-computing techniques. This volume is a true interdisciplinary work, and the audience includes postgraduates and early career researchers interested in Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, and Chemical Engineering. - Key insights from global contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Introduces classic soft-computing techniques, necessary for a range of disciplines.

Book Survival Analysis with Python

Download or read book Survival Analysis with Python written by Avishek Nag and published by CRC Press. This book was released on 2021-12-17 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis uses statistics to calculate time to failure. Survival Analysis with Python takes a fresh look at this complex subject by explaining how to use the Python programming language to perform this type of analysis. As the subject itself is very mathematical and full of expressions and formulations, the book provides detailed explanations and examines practical implications. The book begins with an overview of the concepts underpinning statistical survival analysis. It then delves into Parametric models with coverage of Concept of maximum likelihood estimate (MLE) of a probability distribution parameter MLE of the survival function Common probability distributions and their analysis Analysis of exponential distribution as a survival function Analysis of Weibull distribution as a survival function Derivation of Gumbel distribution as a survival function from Weibull Non-parametric models including Kaplan–Meier (KM) estimator, a derivation of expression using MLE Fitting KM estimator with an example dataset, Python code and plotting curves Greenwood’s formula and its derivation Models with covariates explaining The concept of time shift and the accelerated failure time (AFT) model Weibull-AFT model and derivation of parameters by MLE Proportional Hazard (PH) model Cox-PH model and Breslow’s method Significance of covariates Selection of covariates The Python lifelines library is used for coding examples. By mapping theory to practical examples featuring datasets, this book is a hands-on tutorial as well as a handy reference.

Book Python for Marketing Research and Analytics

Download or read book Python for Marketing Research and Analytics written by Jason S. Schwarz and published by Springer Nature. This book was released on 2020-11-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.

Book Interpretable Machine Learning

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Book Machine Learning with Python

Download or read book Machine Learning with Python written by Amin Zollanvari and published by Springer Nature. This book was released on 2023-07-11 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is meant as a textbook for undergraduate and graduate students who are willing to understand essential elements of machine learning from both a theoretical and a practical perspective. The choice of the topics in the book is made based on one criterion: whether the practical utility of a certain method justifies its theoretical elaboration for students with a typical mathematical background in engineering and other quantitative fields. As a result, not only does the book contain practically useful techniques, it also presents them in a mathematical language that is accessible to both graduate and advanced undergraduate students. The textbook covers a range of topics including nearest neighbors, linear models, decision trees, ensemble learning, model evaluation and selection, dimensionality reduction, assembling various learning stages, clustering, and deep learning along with an introduction to fundamental Python packages for data science and machine learning such as NumPy, Pandas, Matplotlib, Scikit-Learn, XGBoost, and Keras with TensorFlow backend. Given the current dominant role of the Python programming language for machine learning, the book complements the theoretical presentation of each technique by its Python implementation. In this regard, two chapters are devoted to cover necessary Python programming skills. This feature makes the book self-sufficient for students with different programming backgrounds and is in sharp contrast with other books in the field that assume readers have prior Python programming experience. As such, the systematic structure of the book, along with the many examples and exercises presented, will help the readers to better grasp the content and be equipped with the practical skills required in day-to-day machine learning applications.

Book Bayesian Reasoning and Gaussian Processes for Machine Learning Applications

Download or read book Bayesian Reasoning and Gaussian Processes for Machine Learning Applications written by Hemachandran K and published by CRC Press. This book was released on 2022-04-14 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces Bayesian reasoning and Gaussian processes into machine learning applications. Bayesian methods are applied in many areas, such as game development, decision making, and drug discovery. It is very effective for machine learning algorithms in handling missing data and extracting information from small datasets. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications uses a statistical background to understand continuous distributions and how learning can be viewed from a probabilistic framework. The chapters progress into such machine learning topics as belief network and Bayesian reinforcement learning, which is followed by Gaussian process introduction, classification, regression, covariance, and performance analysis of Gaussian processes with other models. FEATURES Contains recent advancements in machine learning Highlights applications of machine learning algorithms Offers both quantitative and qualitative research Includes numerous case studies This book is aimed at graduates, researchers, and professionals in the field of data science and machine learning.

Book Machine Learning With School Level Math

Download or read book Machine Learning With School Level Math written by Swapnonil Banerjee and published by SwaNi. This book was released on 2024-05-06 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning, a subset of artificial intelligence, is one of the most transformative technologies of our time. And yet, machine learning and data exploration are minimally covered in the standard school curriculum. Machine Learning With School Level Math brings you a compelling program with a brand-new approach. Our stance is that many elements of machine learning are completely accessible without the sophistication of advanced math and within the reach of middle to high school students. All they need is the math they are already learning in school. Developed collaboratively by a physicist with significant teaching experience including K-12 teaching experience and an algorithm development industry expert, our program is a first-of-its-kind effort to demystify the inner workings of machine learning at the school level. Quick highlights: 1. Prerequisites: No advanced math or programming background is assumed. 2. 8 chapters, 30 worksheets, and more than 100 fully worked-out pen-and-paper and computer problems. 3. Learn Python programming with unique and innovative CodeTrailMaps From concepts of rate and slope, the gradient descent algorithm (GDA) is developed, and then the GDA is used to solve linear regression, logistic regression, and neural nets. Composite functions, part of current school course structures, are used to introduce neural nets. Through these models, students learn a complete machine learning workflow, including data normalization, model selection, finding model parameters using a pertinent cost function, train/test cycles, and the construction of confusion matrices to evaluate model performance. Ideas of dimensionality reduction with principal component analysis are also covered as one more application of GDA. Basic Python programming is introduced seamlessly alongside the theory to deliver a thorough hands-on experience. A general audience, curious about the fundamentals of machine learning will also find value in this book.

Book Advances in Networked Based Information Systems

Download or read book Advances in Networked Based Information Systems written by Leonard Barolli and published by Springer Nature. This book was released on 2020-08-19 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide the latest research findings, innovative research results, methods, and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and their applications. The networks and information systems of today are evolving rapidly. There are new trends and applications in information networking such as wireless sensor networks, ad hoc networks, peer-to-peer systems, vehicular networks, opportunistic networks, grid and cloud computing, pervasive and ubiquitous computing, multimedia systems, security, multi-agent systems, high-speed networks, and web-based systems. These kinds of networks need to manage the increasing number of users, provide support for different services, guarantee the QoS, and optimize the network resources. For these networks, there are many research issues and challenges that should be considered and find solutions.

Book Data Mining with Python

Download or read book Data Mining with Python written by Di Wu and published by CRC Press. This book was released on 2024-04-10 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is everywhere and it’s growing at an unprecedented rate. But making sense of all that data is a challenge. Data Mining is the process of discovering patterns and knowledge from large data sets, and Data Mining with Python focuses on the hands-on approach to learning Data Mining. It showcases how to use Python Packages to fulfill the Data Mining pipeline, which is to collect, integrate, manipulate, clean, process, organize, and analyze data for knowledge. The contents are organized based on the Data Mining pipeline, so readers can naturally progress step by step through the process. Topics, methods, and tools are explained in three aspects: “What it is” as a theoretical background, “why we need it” as an application orientation, and “how we do it” as a case study. This book is designed to give students, data scientists, and business analysts an understanding of Data Mining concepts in an applicable way. Through interactive tutorials that can be run, modified, and used for a more comprehensive learning experience, this book will help its readers to gain practical skills to implement Data Mining techniques in their work.