Download or read book Regression Modeling with Actuarial and Financial Applications written by Edward W. Frees and published by Cambridge University Press. This book was released on 2010 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.
Download or read book Lasso Regressions and Forecasting Models in Applied Stress Testing written by Mr.Jorge A. Chan-Lau and published by International Monetary Fund. This book was released on 2017-05-05 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.
Download or read book Quantitative Methods for Economics and Finance written by J.E. Trinidad-Segovia and published by MDPI. This book was released on 2021-02-12 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Machine Learning for Asset Management written by Emmanuel Jurczenko and published by John Wiley & Sons. This book was released on 2020-10-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Download or read book Computational Intelligence in Economics and Finance written by Paul P. Wang and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the ability to handle specific characteristics of economics and finance forecasting problems like e.g. non-linear relationships, behavioral changes, or knowledge-based domain segmentation, we have recently witnessed a phenomenal growth of the application of computational intelligence methodologies in this field. In this volume, Chen and Wang collected not just works on traditional computational intelligence approaches like fuzzy logic, neural networks, and genetic algorithms, but also examples for more recent technologies like e.g. rough sets, support vector machines, wavelets, or ant algorithms. After an introductory chapter with a structural description of all the methodologies, the subsequent parts describe novel applications of these to typical economics and finance problems like business forecasting, currency crisis discrimination, foreign exchange markets, or stock markets behavior.
Download or read book Large Dimensional Factor Analysis written by Jushan Bai and published by Now Publishers Inc. This book was released on 2008 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Dimensional Factor Analysis provides a survey of the main theoretical results for large dimensional factor models, emphasizing results that have implications for empirical work. The authors focus on the development of the static factor models and on the use of estimated factors in subsequent estimation and inference. Large Dimensional Factor Analysis discusses how to determine the number of factors, how to conduct inference when estimated factors are used in regressions, how to assess the adequacy pf observed variables as proxies for latent factors, how to exploit the estimated factors to test unit root tests and common trends, and how to estimate panel cointegration models.
Download or read book Panel Data Econometrics written by Mike Tsionas and published by Academic Press. This book was released on 2019-06-20 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Panel Data Econometrics: Empirical Applications introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts
Download or read book Statistical Machine Learning with Applications written by Gordon Ritter and published by . This book was released on 2021-07-30 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique compendium develops a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. It introduces the key elements of a parametric statistical model: likelihood, prior, and posterior, and show how to use them to make predictions.The book covers classical techniques such as multiple regression and the Kalman filter in a clear, accessible style that has been popular with students, but also includes detailed treatments of state-of-the-art models, highlighting tree-based methods, support vector machines and kernel methods, deep learning, and reinforcement learning. Theories are supplemented by real-world examples.This reference text is useful for undergraduate, graduate and even PhD students in quantitative finance, and also to practitioners who are facing the reality that data science and machine learning are disrupting the industry.
Download or read book R In Finance And Economics A Beginner s Guide written by Abhay Kumar Singh and published by World Scientific Publishing Company. This book was released on 2016-12-14 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the statistical software R and its application with an empirical approach in finance and economics. It is specifically targeted towards undergraduate and graduate students. It provides beginner-level introduction to R using RStudio and reproducible research examples. It will enable students to use R for data cleaning, data visualization and quantitative model building using statistical methods like linear regression, econometrics (GARCH etc), Copulas, etc. Moreover, the book demonstrates latest research methods with applications featuring linear regression, quantile regression, panel regression, econometrics, dependence modelling, etc. using a range of data sets and examples.
Download or read book Data Science for Financial Econometrics written by Nguyen Ngoc Thach and published by Springer Nature. This book was released on 2020-11-13 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.
Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Download or read book Quantile Regression written by Cristina Davino and published by John Wiley & Sons. This book was released on 2013-12-31 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website (www.wiley.com/go/quantile_regression) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
Download or read book Application of Big Data Deep Learning Machine Learning and Other Advanced Analytical Techniques in Environmental Economics and Policy written by Tsun Se Cheong and published by Frontiers Media SA. This book was released on 2022-07-25 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Model Averaging written by David Fletcher and published by Springer. This book was released on 2019-01-17 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models.
Download or read book Meta regression Analysis in Economics and Business written by T. D. Stanley and published by Routledge. This book was released on 2012 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meta-Regression Analysis in Economics and Business is the first text devoted to the meta-regression analysis (MRA) of economics and business research.