EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topological Insulator and Related Topics

Download or read book Topological Insulator and Related Topics written by and published by Academic Press. This book was released on 2021-09-24 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological Insulator and Related Topics, Volume 108 in the Semiconductors and Semimental series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as Majorana modes at the ends of one dimensional topological superconductors, Optical/electronic properties of Weyl semimetals, High magnetic fields to unveil the electronic structure, magnetic field-induced transitions, and unconventional transport properties of topological semimetals, New aspects of strongly correlated superconductivity in the nearly flat-band regime, Anomalous transport properties in topological semimetals, Pseudo-gauge field and piezo-electromagnetic response in topological materials, Topological Gapped States Protected by Spatial Symmetries, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Semiconductors and Semimetals series Updated release includes the latest information on Topological Insulator and Related Topics

Book Topological Insulators

Download or read book Topological Insulators written by and published by Elsevier. This book was released on 2013-11-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was thought that all band insulators are essentially equivalent, the new theory predicts two distinct classes of band insulators in two spatial dimensions and 16 classes in three dimensions. These "topological" insulators exhibit a host of unusual physical properties, including topologically protected gapless surface states and exotic electromagnetic response, previously thought impossible in such systems. Within a short time, this new state of quantum matter, topological insulators, has been discovered experimentally both in 2D thin film structures and in 3D crystals and alloys. It appears that topological insulators are quite common in nature, and there are dozens of confirmed substances that exhibit this behavior. Theoretical and experimental studies of these materials are ongoing with the goal of attaining the fundamental understanding and exploiting them in future practical applications. Usable as a textbook for graduate students and as a reference resource for professionals Includes the most recent discoveries and visions for future technological applications All authors are prominent in the field

Book Topological Insulators

    Book Details:
  • Author : Jeroen B. Oostinga
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086890
  • Pages : 48 pages

Download or read book Topological Insulators written by Jeroen B. Oostinga and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of topological insulators as a new state of matter has generated immense interest in this new class of materials. Three-dimensional (3D) topological insulators are characterized by the presence of an odd number of families of Dirac fermions—ideally one- at each of their surfaces. Angle-resolved photoemission experiments have demonstrated the presence of the expected Dirac fermions, but it is clear that to explore the electronic properties of these systems, transport measurements in many different device geometries are called for, just as it has been the case for Dirac fermions in graphene. In this chapter we review the status of transport studies through 3D topological insulators as of early summer 2012, after that a first generation of experiments has been performed. The results provide many different indications of the presence of surface fermions, as well as evidence of their Dirac nature. However, no textbook “manifestation” of surface Dirac fermions has been reported so far in these materials. Indeed, experiments also show that investigations are severely hampered by the material quality in most cases, because of the effect of high conductivity in the bulk, of low carrier mobility, of technical difficulties hampering device fabrication, and other reasons. In this chapter, we attempt to give a balanced overview of the work done during this first period and of the results obtained, stressing the implications and the limits of many of the observations that have been reported in the literature.

Book Topological Insulators

Download or read book Topological Insulators written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2024-01-15 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: A topological insulator is an area that has yet to be fully explored and developed. The charge-induced bandgap fluctuation in the best-known bismuth-chalcogenide-based topological insulators is approximately 10MeV in magnitude. The major focus has shifted to the investigation of the presence of high-symmetry electronic bands as well as the utilization of easily produced materials. As the subject of topological insulators is still in the nascent stage, there is growing research and knowledge in the emerging field. This book is intended to provide the readers with an understanding of the needs and application of these materials. Keywords: Topological Insulators, Insulators, One-Dimensional Topological Insulators, Graphene, Magnetic Topological Insulator, Antiferromagnetic Phase, Ferromagnetic Phase, Topological Superconductor, Nonlinear Optical Behavior, Saturable Absorber, Quantum, Band Gap, Photonic Topological Insulators.

Book Topological Insulators

    Book Details:
  • Author : Naoto Nagaosa
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086912
  • Pages : 39 pages

Download or read book Topological Insulators written by Naoto Nagaosa and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of the rich topological structures of electronic states in solids has opened up many interesting possibilities. The “twist” of the wavefunctions in momentum space, which is characterized by topological invariants, leads to the robust edge or surface states. The electron fractionalization associated with these topological states brings about the novel physics such as absence of localization, topological magneto-electric effect, and Majorana fermions. Here we describe the principles and some concrete examples of the theoretical design of the topological materials and their functions based on these recent developments.

Book Transport of dirac fermions on the surface of strong topological insulator and graphene

Download or read book Transport of dirac fermions on the surface of strong topological insulator and graphene written by Arijit Kundu and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effective Continuous Model on Topological Insulators

Download or read book Effective Continuous Model on Topological Insulators written by Wenyu Shan and published by . This book was released on 2017-01-26 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Effective Continuous Model on Topological Insulators" by Wenyu, Shan, 单文语, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Topological insulators are electronic materials that have a conventional energy gap as an insulator or semiconductor in the bulk, but possess gapless conducting states around their boundary. They are novel topological states of quantum matters and exhibit a series of exotic physics, such as quantum spin Hall effect, single valley Dirac fermions, Majorana fermions, topological magnetoelectric effect, etc. The conducting edge and surface states have topological origin of the electron band structure, and are protected by time-reversal symmetry such that they are robust or immune against local perturbation. In this dissertation, an effective continuous model for surface states is established from the three-dimensional modified Dirac model, and a theory of ultrathin film for topological insulators is developed. The established electronic model helps us explore spin physics of massive Dirac fermions. The theory has been successfully applied to explain an energy gap opening of the surface states in Bi2Se3 thin film in the measurement of angle-resolved photoemission spectroscopy (ARPES). In-gap bound states are also considered due to vacancy and impurity in topological insulators. It is found that a vacancy can always induce in-gap bound states in both two- and threedimensional topological insulators, and a half quantum magnetic flux inside the vacancy can result in helical Dirac zero modes. Finally the effect of random impurities on the surface transport in topological insulators is investigated, particularly the weak anti-localization of surface electrons in the quantum diffusion regime. It is found that the spin-orbit scattering may suppress the weak localization behaviors of massive Dirac fermions, which suggests an experiment to detect the weak localization in the topological insulator thin film. DOI: 10.5353/th_b4961767 Subjects: Condensed matter

Book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators

Download or read book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.

Book Topological Insulator Systems with Magnetism

Download or read book Topological Insulator Systems with Magnetism written by Joon Lee and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation describes topological insulator systems hybridized with magnetism. The Dirac surface states induced by strong spin-orbit interaction can be modified by breaking time-reversal symmetry that protects the surface state. We study the modified surface states of topological insulators by introducing magnetism by doping magnetic atoms or interfacing a magnetic layer to the surface. Also, we explore potential spintronics applications of topological insulators by utilizing magnetic tunnel junctions to evidence the inherently spin-polarized texture of the topological insulator surface state. For this dissertation research, single crystalline topological insulator thin films grown by molecular beam epitaxy have been employed. From the motivation of breaking time-reversal symmetry in the surface state, the first experiments study the structural, magnetic, and magneto-transport properties of a magnetically doped, three-dimensional topological insulator, bismuth telluride doped with Mn. We observed ferromagnetism with a Curie temperature up to 17 K in films with ~2-10% Mn concentrations. The observed ferromagnetism is independent of carrier density in the Mn-doped bismuth telluride films, suggesting that it is not mediated by charge carriers. The next topological insulator system with magnetism is a hybrid topological insulator/ferromagnet heterostructure as a new approach for topological insulator hybrid systems using a dilute magnetic semiconductor Ga1-xMnxAs. A highly resistive Ga1-xMnxAs with out-of-plane magnetic anisotropy is cleanly interfaced with a topological insulator Bi2-xSbxTe3-ySey by molecular beam epitaxy. Magneto-transport measurements on a top-gated heterostructure device show a crossover from positive magneto-conductance to negative magneto-conductance as well as a systematic emergence of an anomalous Hall effect as the temperature is lowered or as the chemical potential approaches the Dirac point. The results are possibly interpreted as the modification of the surface state at the interface by the adjacent, ferromagnetic Ga1-xMnxAs layer. The last topological insulator system with magnetism is a topological insulator channel with a magnetic tunnel junction on it. We seek a potential role of topological insulators in spintronics as generators of carrier spin polarization. Electrical detection of the inherent spin polarization of the topological insulator surface state was demonstrated using a permalloy/Al2O3 magnetic tunnel junction on a (Bi,Sb)2Te3 channel. The observed hysteretic spin signals occurring at the magnetic switching field of the ferromagnet permalloy layer can be interpreted as the projection of the current-induced spin polarization on a topological insulator surface onto the magnetization of the ferromagnet via tunneling.

Book Many Body Quantum Theory in Condensed Matter Physics

Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Book Oxford Handbook of Nanoscience and Technology

Download or read book Oxford Handbook of Nanoscience and Technology written by A.V. Narlikar and published by Oxford University Press. This book was released on 2010-02-11 with total page 957 pages. Available in PDF, EPUB and Kindle. Book excerpt: These three volumes are intended to shape the field of nanoscience and technology and will serve as an essential point of reference for cutting-edge research in the field.

Book On Three Levels

    Book Details:
  • Author : Mark Fannes
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461524601
  • Pages : 467 pages

Download or read book On Three Levels written by Mark Fannes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a five-day NATO Advanced Research Workshop "On Three Levels, the mathematical physics of micro-, meso-, and macro phenomena," conducted from July 19 to 23 in Leuven, Belgium. The main purpose of the workshop was to bring together and to confront where relevant, classical and quantum approaches in the rigorous study of the relation between the various levels of physical description. The reader will find here discussions on a variety of topics involving a broad range of scales. For the micro-level, contributions are presented on models of reaction-diffusion pro cesses, quantum groups and quantum spin systems. The reports on quantum disorder, the quantum Hall effect, semi-classical approaches of wave mechanics and the random Schrodinger equation can be situated on the meso-level. Discussions on macroscopic quantum effects and large scale fluctuations are dealing with the macroscopic level of description. These three levels are however not independent and emphasis is put on relating these scales of description. This is especially the case for the contributions on kinetic and hydrodynamicallimits, the discussions on large deviations and the strong and weak coupling limits. The advisory board was composed of J.L. Lebowitz, J.T. Lewis and E.H. Lieb. The organizing committee was formed by Ph.A. Martin, G.L. Sewell, E.R. Speer and A.

Book Bogoliubov de Gennes Method and Its Applications

Download or read book Bogoliubov de Gennes Method and Its Applications written by Jian-Xin Zhu and published by Springer. This book was released on 2016-06-21 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an elementary yet systematic description of the Bogoliubov-de Gennes (BdG) equations, their unique symmetry properties and their relation to Green’s function theory. Specifically, it introduces readers to the supercell technique for the solutions of the BdG equations, as well as other related techniques for more rapidly solving the equations in practical applications. The BdG equations are derived from a microscopic model Hamiltonian with an effective pairing interaction and fully capture the local electronic structure through self-consistent solutions via exact diagonalization. This approach has been successfully generalized to study many aspects of conventional and unconventional superconductors with inhomogeneities – including defects, disorder or the presence of a magnetic field – and becomes an even more attractive choice when the first-principles information of a typical superconductor is incorporated via the construction of a low-energy tight-binding model. Further, the lattice BdG approach is essential when theoretical results for local electronic states around such defects are compared with the scanning tunneling microscopy measurements. Altogether, these lectures provide a timely primer for graduate students and non-specialist researchers, while also offering a useful reference guide for experts in the field.

Book Singular Optics

    Book Details:
  • Author : Gregory J. Gbur
  • Publisher : CRC Press
  • Release : 2016-11-17
  • ISBN : 1315356686
  • Pages : 345 pages

Download or read book Singular Optics written by Gregory J. Gbur and published by CRC Press. This book was released on 2016-11-17 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." —Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." —Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." —Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave’s properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities.

Book Waves and Fields in Optoelectronics

Download or read book Waves and Fields in Optoelectronics written by Hermann A. Haus and published by Prentice Hall. This book was released on 1984 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maxwell's equations of isotropic media and some important identities. Reflection of plane waves from interfaces. Mirrors and interferometers. Fresnel diffraction in paraxial limit. Hermit-Gaussian beams and their transformations. Optical fibers and guiding layers. Coupling of modes - resonators and couplers. Distributed feedback structures. Acousto-optic modulators. Some nonlinear systems. Wave propagation in anisotropic media. Electro-optic modulators. Nonlinear optics. Optical detection.