EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Recurrence in Topological Dynamics

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by Springer Science & Business Media. This book was released on 1997-07-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.

Book Recurrence in Topological Dynamics

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg's original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natural constructions arise from a topology or group action on the underlying set. The foundations are laid, in perhaps tedious detail, in Chapter 2. The family machinery is then applied in Chapters 3 and 4 to describe family versions of recurrence, topological transitivity, distality and rigidity.

Book Topological Dynamics

    Book Details:
  • Author : Walter Helbig Gottschalk
  • Publisher : American Mathematical Soc.
  • Release : 1955-01-01
  • ISBN : 9780821874691
  • Pages : 184 pages

Download or read book Topological Dynamics written by Walter Helbig Gottschalk and published by American Mathematical Soc.. This book was released on 1955-01-01 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

Book Recurrence in Ergodic Theory and Combinatorial Number Theory

Download or read book Recurrence in Ergodic Theory and Combinatorial Number Theory written by Harry Furstenberg and published by Princeton University Press. This book was released on 2014-07-14 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Book Topological Dynamical Systems

Download or read book Topological Dynamical Systems written by Jan Vries and published by Walter de Gruyter. This book was released on 2014-01-31 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

Book The General Topology of Dynamical Systems

Download or read book The General Topology of Dynamical Systems written by Ethan Akin and published by American Mathematical Soc.. This book was released on 1993 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.

Book Topological and Symbolic Dynamics

Download or read book Topological and Symbolic Dynamics written by Petr Kůrka and published by Société Mathématique de France. This book was released on 2003 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.

Book Ergodic Theory

    Book Details:
  • Author : Manfred Einsiedler
  • Publisher : Springer Science & Business Media
  • Release : 2010-09-11
  • ISBN : 0857290215
  • Pages : 486 pages

Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Book Recurrence in Topological Dynamics

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by . This book was released on 2014-01-15 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamical Systems and Ergodic Theory

Download or read book Dynamical Systems and Ergodic Theory written by Mark Pollicott and published by Cambridge University Press. This book was released on 1998-01-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Book Recurrence and Topology

Download or read book Recurrence and Topology written by John M. Alongi and published by American Mathematical Soc.. This book was released on 2007 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since at least the time of Poisson, mathematicians have pondered the notion of recurrence for differential equations. Solutions that exhibit recurrent behavior provide insight into the behavior of general solutions. In Recurrence and Topology, Alongi and Nelson provide a modern understanding of the subject, using the language and tools of dynamical systems and topology. Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points.

Book Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Download or read book Generalized Ordinary Differential Equations in Abstract Spaces and Applications written by Everaldo M. Bonotto and published by John Wiley & Sons. This book was released on 2021-09-15 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Book Dynamical Systems

    Book Details:
  • Author : Luis Barreira
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-02
  • ISBN : 1447148355
  • Pages : 214 pages

Download or read book Dynamical Systems written by Luis Barreira and published by Springer Science & Business Media. This book was released on 2012-12-02 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.

Book Extremes and Recurrence in Dynamical Systems

Download or read book Extremes and Recurrence in Dynamical Systems written by Valerio Lucarini and published by John Wiley & Sons. This book was released on 2016-04-25 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.

Book Recurrence Quantification Analysis

Download or read book Recurrence Quantification Analysis written by Charles L. Webber, Jr. and published by Springer. This book was released on 2014-07-31 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.

Book Invitation to Dynamical Systems

Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2012-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.

Book Introduction to Dynamical Systems

Download or read book Introduction to Dynamical Systems written by Michael Brin and published by Cambridge University Press. This book was released on 2015-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.