Download or read book Recent Developments in Quantum Affine Algebras and Related Topics written by Naihuan Jing and published by American Mathematical Soc.. This book was released on 1999 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.
Download or read book Representations of Algebras and Related Topics written by Andrzej Skowroński and published by European Mathematical Society. This book was released on 2011 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which explores recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, combinatorics, quantum algebras, and theoretical field, is conceived as a handbook to provide easy access to the present state of knowledge and stimulate further development. The many topics discussed include quivers, quivers with potential, bound quiver algebras, Jacobian algebras, cluster algebras and categories, Calabi-Yau algebras and categories, triangulated and derived categories, and quantum loop algebras. This book consists of thirteen self-contained expository survey and research articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. The articles contain a large number of examples and open problems and give new perspectives for research in the field.
Download or read book Quantum Affine Algebras Extended Affine Lie Algebras and Their Applications written by Yun Gao and published by American Mathematical Soc.. This book was released on 2010 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference on Quantum Affine Algebras, Extended Affine Lie Algebras, and Applications, which was held at the Banff International Research Station, Banff, Canada, from March 2-7, 2008. Many of the papers include new results on different aspects of quantum affine algebras, extended affine Lie algebras, and their applications in other areas of mathematics and physics. Any reader interested in learning about the recent developments in quantum affine algebras and extended affine Lie algebras will benefit from this book.
Download or read book Interactions of Quantum Affine Algebras with Cluster Algebras Current Algebras and Categorification written by Jacob Greenstein and published by Springer Nature. This book was released on 2022-03-11 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.
Download or read book Representation Theory of Algebraic Groups and Quantum Groups written by Akihiko Gyoja and published by Springer Science & Business Media. This book was released on 2010-11-25 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
Download or read book Representation Theory Mathematical Physics and Integrable Systems written by Anton Alekseev and published by Springer Nature. This book was released on 2022-02-05 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
Download or read book Vertex Operator Algebras Number Theory and Related Topics written by Matthew Krauel and published by American Mathematical Soc.. This book was released on 2020-07-13 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Conference on Vertex Operator Algebras, Number Theory, and Related Topics, held from June 11–15, 2018, at California State University, Sacramento, California. The mathematics of vertex operator algebras, vector-valued modular forms and finite group theory continues to provide a rich and vibrant landscape in mathematics and physics. The resurgence of moonshine related to the Mathieu group and other groups, the increasing role of algebraic geometry and the development of irrational vertex operator algebras are just a few of the exciting and active areas at present. The proceedings center around active research on vertex operator algebras and vector-valued modular forms and offer original contributions to the areas of vertex algebras and number theory, surveys on some of the most important topics relevant to these fields, introductions to new fields related to these and open problems from some of the leaders in these areas.
Download or read book Symmetries Integrable Systems and Representations written by Kenji Iohara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
Download or read book Recent Developments in Infinite Dimensional Lie Algebras and Conformal Field Theory written by Stephen Berman and published by American Mathematical Soc.. This book was released on 2002 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of its many applications to mathematics and mathematical physics, the representation theory of infinite-dimensional Lie and quantized enveloping algebras comprises an important area of current research. This volume includes articles from the proceedings of an international conference, ``Infinite-Dimensional Lie Theory and Conformal Field Theory'', held at the University of Virginia. Many of the contributors to the volume are prominent researchers in the field. Thisconference provided an opportunity for mathematicians and physicists to interact in an active research area of mutual interest. The talks focused on recent developments in the representation theory of affine, quantum affine, and extended affine Lie algebras and Lie superalgebras. They also highlightedapplications to conformal field theory, integrable and disordered systems. Some of the articles are expository and accessible to a broad readership of mathematicians and physicists interested in this area; others are research articles that are appropriate for more advanced readers.
Download or read book Physics And Combinatorics Procs Of The Nagoya 2000 Intl Workshop written by Anatol N Kirillov and published by World Scientific. This book was released on 2001-04-19 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nagoya 2000 International Workshop gathered together a group of scientists actively working in combinatorics, representation theory, special functions, number theory and mathematical physics, to acquaint the participants with some basic results in their fields and to discuss existing and possible interactions between the mentioned subjects. This volume constitutes the proceedings of the workshop.
Download or read book Physics and Combinatorics 2000 written by Anatol N. Kirillov and published by World Scientific. This book was released on 2001 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nagoya 2000 International Workshop gathered together a group of scientists actively working in combinatorics, representation theory, special functions, number theory and mathematical physics, to acquaint the participants with some basic results in their fields and to discuss existing and possible interactions between the mentioned subjects. This volume constitutes the proceedings of the workshop.
Download or read book Groups of Homotopy Self Equivalences and Related Topics written by Ken-ichi Maruyama and published by American Mathematical Soc.. This book was released on 2001 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.
Download or read book Combinatorial and Geometric Representation Theory written by Seok-Jin Kang and published by American Mathematical Soc.. This book was released on 2003 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the international conference on Combinatorial and Geometric Representation Theory. In the field of representation theory, a wide variety of mathematical ideas are providing new insights, giving powerful methods for understanding the theory, and presenting various applications to other branches of mathematics. Over the past two decades, there have been remarkable developments. This book explains the strong connections between combinatorics, geometry, and representation theory. It is suitable for graduate students and researchers interested in representation theory.
Download or read book Sugawara Operators for Classical Lie Algebras written by Alexander Molev: and published by American Mathematical Soc.. This book was released on 2018-02-28 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.
Download or read book Geometric Representation Theory and Extended Affine Lie Algebras written by Erhard Neher and published by American Mathematical Soc.. This book was released on 2011 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie theory has connections to many other disciplines such as geometry, number theory, mathematical physics, and algebraic combinatorics. The interaction between algebra, geometry and combinatorics has proven to be extremely powerful in shedding new light on each of these areas. This book presents the lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the exciting developments in Lie algebras and representation theory in the last two decades. It includes topics such as geometric realizations of irreducible representations in three different approaches, combinatorics and geometry of canonical and crystal bases, finite $W$-algebras arising as the quantization of the transversal slice to a nilpotent orbit, structure theory of extended affine Lie algebras, and representation theory of affine Lie algebras at level zero. This book will be of interest to mathematicians working in Lie algebras and to graduate students interested in learning the basic ideas of some very active research directions. The extensive references in the book will be helpful to guide non-experts to the original sources.
Download or read book New Trends in Hopf Algebra Theory written by Nicolás Andruskiewitsch and published by American Mathematical Soc.. This book was released on 2000 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings from the Colloquium on Quantum Groups and Hopf Algebras held in Cordoba (Argentina) in 1999. The meeting brought together researchers who discussed recent developments in Hopf algebras, one of the most important being the influence of quantum groups. Articles offer introductory expositions and surveys on topics of current interest that, to date, have not been available in the current literature. Surveys are included on characteristics of Hopf algebras and their generalizations, biFrobenius algebras, braided Hopf algebras, inner actions and Galois theory, face algebras, and infinitesimal Hopf algebras. The following topics are also covered: existence of integrals, classification of semisimple and pointed Hopf algebras, *-Hopf algebras, dendriform algebras, etc. Non-classical topics are also included, reflecting its applications both inside and outside the theory.
Download or read book Instanton Counting Quantum Geometry and Algebra written by Taro Kimura and published by Springer Nature. This book was released on 2021-07-05 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang–Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg–Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the Ω-deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.