EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elliptic Curves

    Book Details:
  • Author : Lawrence C. Washington
  • Publisher : CRC Press
  • Release : 2008-04-03
  • ISBN : 1420071475
  • Pages : 533 pages

Download or read book Elliptic Curves written by Lawrence C. Washington and published by CRC Press. This book was released on 2008-04-03 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application

Book Rational Points on Elliptic Curves

Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Book Elliptic Curves  Second Edition

Download or read book Elliptic Curves Second Edition written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

Book LMSST  24 Lectures on Elliptic Curves

Download or read book LMSST 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.

Book Arithmetic Theory of Elliptic Curves

Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer Science & Business Media. This book was released on 1999-10-19 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Book The Arithmetic of Elliptic Curves

Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Book Elliptic Curves

    Book Details:
  • Author : Henry McKean
  • Publisher : Cambridge University Press
  • Release : 1999-08-13
  • ISBN : 9780521658171
  • Pages : 300 pages

Download or read book Elliptic Curves written by Henry McKean and published by Cambridge University Press. This book was released on 1999-08-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.

Book Elliptic Curves  Modular Forms  and Their L functions

Download or read book Elliptic Curves Modular Forms and Their L functions written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2011 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.

Book Real Elliptic Curves

Download or read book Real Elliptic Curves written by N.L. Alling and published by Elsevier. This book was released on 2011-08-18 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real Elliptic Curves

Book Elliptic Curves and Their Applications to Cryptography

Download or read book Elliptic Curves and Their Applications to Cryptography written by Andreas Enge and published by Springer Science & Business Media. This book was released on 1999-08-31 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their invention in the late seventies, public key cryptosystems have become an indispensable asset in establishing private and secure electronic communication, and this need, given the tremendous growth of the Internet, is likely to continue growing. Elliptic curve cryptosystems represent the state of the art for such systems. Elliptic Curves and Their Applications to Cryptography: An Introduction provides a comprehensive and self-contained introduction to elliptic curves and how they are employed to secure public key cryptosystems. Even though the elegant mathematical theory underlying cryptosystems is considerably more involved than for other systems, this text requires the reader to have only an elementary knowledge of basic algebra. The text nevertheless leads to problems at the forefront of current research, featuring chapters on point counting algorithms and security issues. The Adopted unifying approach treats with equal care elliptic curves over fields of even characteristic, which are especially suited for hardware implementations, and curves over fields of odd characteristic, which have traditionally received more attention. Elliptic Curves and Their Applications: An Introduction has been used successfully for teaching advanced undergraduate courses. It will be of greatest interest to mathematicians, computer scientists, and engineers who are curious about elliptic curve cryptography in practice, without losing the beauty of the underlying mathematics.

Book Introduction to Elliptic Curves and Modular Forms

Download or read book Introduction to Elliptic Curves and Modular Forms written by Neal I. Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.

Book Elliptic Curves in Cryptography

Download or read book Elliptic Curves in Cryptography written by Ian F. Blake and published by Cambridge University Press. This book was released on 1999-07-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.

Book Algorithms for Modular Elliptic Curves Full Canadian Binding

Download or read book Algorithms for Modular Elliptic Curves Full Canadian Binding written by J. E. Cremona and published by CUP Archive. This book was released on 1997-05-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an extensive set of tables giving information about elliptic curves.

Book Elliptic Curve Public Key Cryptosystems

Download or read book Elliptic Curve Public Key Cryptosystems written by Alfred J. Menezes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic curves have been intensively studied in algebraic geometry and number theory. In recent years they have been used in devising efficient algorithms for factoring integers and primality proving, and in the construction of public key cryptosystems. Elliptic Curve Public Key Cryptosystems provides an up-to-date and self-contained treatment of elliptic curve-based public key cryptology. Elliptic curve cryptosystems potentially provide equivalent security to the existing public key schemes, but with shorter key lengths. Having short key lengths means smaller bandwidth and memory requirements and can be a crucial factor in some applications, for example the design of smart card systems. The book examines various issues which arise in the secure and efficient implementation of elliptic curve systems. Elliptic Curve Public Key Cryptosystems is a valuable reference resource for researchers in academia, government and industry who are concerned with issues of data security. Because of the comprehensive treatment, the book is also suitable for use as a text for advanced courses on the subject.

Book Modern Cryptography and Elliptic Curves

Download or read book Modern Cryptography and Elliptic Curves written by Thomas R. Shemanske and published by American Mathematical Soc.. This book was released on 2017-07-31 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie–Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC. The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.

Book Elliptic Curves

    Book Details:
  • Author : James S Milne
  • Publisher :
  • Release : 2020
  • ISBN : 9789811221835
  • Pages : 316 pages

Download or read book Elliptic Curves written by James S Milne and published by . This book was released on 2020 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses. An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer. Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work. The first three chapters develop the basic theory of elliptic curves. For this edition, the text has been completely revised and updated.

Book Rational Points on Modular Elliptic Curves

Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.