EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Real Algebraic Surfaces

Download or read book Real Algebraic Surfaces written by Robert Silhol and published by Springer. This book was released on 2006-11-14 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Real Enriques Surfaces

Download or read book Real Enriques Surfaces written by Alexander Degtyarev and published by Springer. This book was released on 2007-05-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.

Book Complex Algebraic Surfaces

Download or read book Complex Algebraic Surfaces written by Arnaud Beauville and published by Cambridge University Press. This book was released on 1996-06-28 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.

Book Algebraic Surfaces

    Book Details:
  • Author : Lucian Badescu
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 147573512X
  • Pages : 261 pages

Download or read book Algebraic Surfaces written by Lucian Badescu and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fundamentals from the theory of algebraic surfaces, including areas such as rational singularities of surfaces and their relation with Grothendieck duality theory, numerical criteria for contractibility of curves on an algebraic surface, and the problem of minimal models of surfaces. In fact, the classification of surfaces is the main scope of this book and the author presents the approach developed by Mumford and Bombieri. Chapters also cover the Zariski decomposition of effective divisors and graded algebras.

Book Algebraic Curves and Riemann Surfaces

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Book Real Algebraic Varieties

Download or read book Real Algebraic Varieties written by Frédéric Mangolte and published by Springer Nature. This book was released on 2020-09-21 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the “folklore”. In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.

Book Lectures on Curves on an Algebraic Surface

Download or read book Lectures on Curves on an Algebraic Surface written by David Mumford and published by Princeton University Press. This book was released on 2016-03-02 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures, delivered by Professor Mumford at Harvard in 1963-1964, are devoted to a study of properties of families of algebraic curves, on a non-singular projective algebraic curve defined over an algebraically closed field of arbitrary characteristic. The methods and techniques of Grothendieck, which have so changed the character of algebraic geometry in recent years, are used systematically throughout. Thus the classical material is presented from a new viewpoint.

Book Real Algebraic Geometry

Download or read book Real Algebraic Geometry written by Michel Coste and published by Springer. This book was released on 2006-11-15 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contributions by: S. Akbulut and H. King; C. Andradas and J. Ruiz; A. Borobia; L. Br|cker; G.W. Brumfield; A. Castilla; Z. Charzynski and P. Skibinski; M. Coste and M. Reguiat; A. Degtyarev; Z. Denkowska; J.-P. Francoise and F. Ronga; J.M. Gamboa and C. Ueno; D. Gondard- Cozette; I.V. Itenberg; P. Jaworski; A. Korchagin; T. Krasinksi and S. Spodzieja; K. Kurdyka; H. Lombardi; M. Marshall and L. Walter; V.F. Mazurovskii; G. Mikhalkin; T. Mostowski and E. Rannou; E.I. Shustin; N. Vorobjov.

Book Algebraic Geometry and Geometric Modeling

Download or read book Algebraic Geometry and Geometric Modeling written by Mohamed Elkadi and published by Springer Science & Business Media. This book was released on 2006-11-02 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book spans the distance between algebraic descriptions of geometric objects and the rendering of digital geometric shapes based on algebraic models. These contrasting points of view inspire a thorough analysis of the key challenges and how they are met. The articles focus on important classes of problems: implicitization, classification, and intersection. Combining illustrative graphics, computations and review articles this book helps the reader gain a firm practical grasp of these subjects.

Book Algebraic Geometry

    Book Details:
  • Author : Robin Hartshorne
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1475738498
  • Pages : 511 pages

Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Book Algebraic Surfaces and Holomorphic Vector Bundles

Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.

Book Donaldson Type Invariants for Algebraic Surfaces

Download or read book Donaldson Type Invariants for Algebraic Surfaces written by Takuro Mochizuki and published by Springer. This book was released on 2009-04-20 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, we de?ne and investigate an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We may expect the existence of interesting “universal relations among invariants”, which would be a natural generalization of the “wall-crossing formula” and the “Witten conjecture” for classical Donaldson invariants. Our goal is to obtain a weaker version of such relations, in other brief words, to describe a relation as the sum of integrals over the products of m- uli spaces of objects with lower ranks. Fortunately, according to a recent excellent work of L. Gottsche, ̈ H. Nakajima and K. Yoshioka, [53], a wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case. We hope that our work in this monograph would, at least tentatively, provides a part of foundation for the further study on such universal relations. In the rest of this preface, we would like to explain our motivation and some of important ingredients of this study. See Introduction for our actual problems and results. Donaldson Invariants Let us brie?y recall Donaldson invariants. We refer to [22] for more details and precise. We also refer to [37], [39], [51] and [53]. LetX be a compact simply con- ? nected oriented real 4-dimensional C -manifold with a Riemannian metric g. Let P be a principalSO(3)-bundle on X.

Book Hassler Whitney Collected Papers Volume I

Download or read book Hassler Whitney Collected Papers Volume I written by James Eelles and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present here the mathematical papers of Hassler Whitney. This collection contains all the published papers, with the exception of some short announcements that Whitney did not wish to be included. We also include the introduction to his book Geometric Integration Theory, and one previously unpublished manuscript on the four-color problem. The papers are presented under some broad categories: graphs· and combinatorics, differentiable functions and singularities, analytic spaces, manifolds, bundles and characteristic classes, topology and algebraic topology, geometric integration theory. Whitney intended to write an introduction to this collection. Unfortunately he left us no manuscript at the time of his death, May 10, 1989. We had discussed the possibility of using his paper "Moscow 1935 - Topology moving toward America," written for the Centennial of the American Mathematical Society, as part of his introduction to this collection, an idea which he much liked. We therefore include this paper, which contains personal information as well as mathematical reflections, as Whitney's own introduction to these volumes. Whitney's mathematical style, like his personal style, was that of an explorer and pioneer. One of the pictures included in these volumes shows him as a mountain climber. In mathematics, he preferred to work on undeveloped areas: break new ground and build foundations. During the last twenty years of his life he concentrated his efforts on developing an educational system that builds on the natural tendency in children to be explorers.

Book Algorithms in Real Algebraic Geometry

Download or read book Algorithms in Real Algebraic Geometry written by Saugata Basu and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.

Book Complex Algebraic Curves

    Book Details:
  • Author : Frances Clare Kirwan
  • Publisher : Cambridge University Press
  • Release : 1992-02-20
  • ISBN : 9780521423533
  • Pages : 278 pages

Download or read book Complex Algebraic Curves written by Frances Clare Kirwan and published by Cambridge University Press. This book was released on 1992-02-20 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.

Book Classical Algebraic Geometry

Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Book Enriques Surfaces I

    Book Details:
  • Author : F. Cossec
  • Publisher : Nelson Thornes
  • Release : 1989
  • ISBN : 9780817634179
  • Pages : 424 pages

Download or read book Enriques Surfaces I written by F. Cossec and published by Nelson Thornes. This book was released on 1989 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of two volumes representing the current state of knowledge about Enriques surfaces which occupy one of the classes in the classification of algebraic surfaces. Recent improvements in our understanding of algebraic surfaces over fields of positive characteristic allowed us to approach the subject from a completely geometric point of view although heavily relying on algebraic methods. Some of the techniques presented in this book can be applied to the study of algebraic surfaces of other types. We hope that it will make this book of particular interest to a wider range of research mathematicians and graduate students. Acknowledgements. The undertaking of this project was made possible by the support of several institutions. Our mutual cooperation began at the University of Warwick and the Max Planck Institute of Mathematics in 1982/83. Most of the work in this volume was done during the visit of the first author at the University of Michigan in 1984-1986. The second author was supported during all these years by grants from the National Science Foundation.