EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Rapid Melt Growth of Silicon Germanium for Heterogeneous Integration on Silicon

Download or read book Rapid Melt Growth of Silicon Germanium for Heterogeneous Integration on Silicon written by Hwei Yin Serene Koh and published by Stanford University. This book was released on 2011 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon has made modern integrated circuit technology possible. As MOSFET gate lengths are scaled to 22nm and beyond, it has become apparent that new materials must be introduced to the silicon-based CMOS process for improved performance and functionality. This dissertation begins with a review of the MOSFET leakage current problem and presents one potential solution: Band-to-Band Tunneling (BTBT) transistors, which have the potential for steeper subthreshold slopes because they do not have the fundamental 'kT/q' limit in the rate at which conventional MOSFETs can be turned on or off. It is clear that these devices must be fabricated in materials with smaller bandgaps for improved performance. Silicon Germanium (SiGe) is one possible material system that could be used to fabricate enhanced BTBT transistors. Rapid Melt Growth (RMG) is a technique that has been used to recrystallize materials on Si substrates. RMG, however, has not previously been applied to SiGe, a binary alloy with large separation in the liquidus-solidus curve in its phase diagram. The development of process and experimental results for obtaining SiGe-on-insulator (SGOI) from bulk Si substrates through RMG are presented. The theory of RMG is analyzed and compositional profiles obtained during RMG of SiGe are modeled to understand why we were able to obtain high quality lateral compositionally graded SGOI substrates. The success of RMG SiGe suggests that the RMG technique can also be applied to III-V ternary and quaternary compounds with similar pseudo-binary phase diagrams. This opens up a wide range of material possibilities with the potential for novel applications in heterogeneous integration and 3-D device technology.

Book Rapid Melt Growth of Silicon Germanium for Heterogeneous Integration on Silicon

Download or read book Rapid Melt Growth of Silicon Germanium for Heterogeneous Integration on Silicon written by Hwei Yin Serene Koh and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon has made modern integrated circuit technology possible. As MOSFET gate lengths are scaled to 22nm and beyond, it has become apparent that new materials must be introduced to the silicon-based CMOS process for improved performance and functionality. This dissertation begins with a review of the MOSFET leakage current problem and presents one potential solution: Band-to-Band Tunneling (BTBT) transistors, which have the potential for steeper subthreshold slopes because they do not have the fundamental 'kT/q' limit in the rate at which conventional MOSFETs can be turned on or off. It is clear that these devices must be fabricated in materials with smaller bandgaps for improved performance. Silicon Germanium (SiGe) is one possible material system that could be used to fabricate enhanced BTBT transistors. Rapid Melt Growth (RMG) is a technique that has been used to recrystallize materials on Si substrates. RMG, however, has not previously been applied to SiGe, a binary alloy with large separation in the liquidus-solidus curve in its phase diagram. The development of process and experimental results for obtaining SiGe-on-insulator (SGOI) from bulk Si substrates through RMG are presented. The theory of RMG is analyzed and compositional profiles obtained during RMG of SiGe are modeled to understand why we were able to obtain high quality lateral compositionally graded SGOI substrates. The success of RMG SiGe suggests that the RMG technique can also be applied to III-V ternary and quaternary compounds with similar pseudo-binary phase diagrams. This opens up a wide range of material possibilities with the potential for novel applications in heterogeneous integration and 3-D device technology.

Book Design and Process for Three dimensional Heterogeneous Integration

Download or read book Design and Process for Three dimensional Heterogeneous Integration written by Shulu Chen and published by Stanford University. This book was released on 2010 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the invention of the integrated circuit (IC) in the late 1950s, the semiconductor industry has experienced dramatic growth driven by both technology and manufacturing improvements. Over the past 40 years, the industry's growth trend has been predicted by Moore's law, and driven by the constant electrical field scaling design methodology. While the intrinsic performance of each device improves over generations, the corresponding interconnects do not. To alleviate this interconnect issue, a three-dimensional (3D) integration concept of transforming longer side to side interconnects into shorter vertical vias by using multiple active layers has attracted much attention. The focus of this thesis is on providing the foundation for 3D heterogeneous integration by investigating methods of growing single crystal materials on the silicon platform and the subsequent low-temperature process flow, through experimental demonstration, theoretical modeling and device structure simplification. First, thin film single crystal GaAs and GaSb were grown on dielectric layers on bulk silicon substrates by the rapid melt growth (RMG) method, using both rapid thermal annealing (RTA) and laser annealing. The relationship between stoichiometry and the crystal structure is discussed according to the theoretical phase diagram and the experimental results. A modified RMG structure is also proposed and demonstrated to solve the potential issue involved in integrating the RMG method into a three-dimensional integrated circuits (3D-IC) process with thick isolation layers. In order to estimate the outcome of the crystallization and to provide further understanding of the physics behind this RMG process, compact models are derived based on classical crystallization theory. Mathematical models including the geometry, the thermal environment and the outcome of the crystallization are built. The initial cooling rate is identified as the key factor for the RMG process. With the ability of integrating multiple materials on silicon substrates, the subsequent process flows using low-temperature-fabrication or simplified device structures are proposed and evaluated to achieve high density 3D integration. A "bonding substrate/monolithic contact" approach is proposed to relieve the thermal constraint from getting the starting single crystal layer without sacrificing the interconnect performance. A low-temperature process using germanium as the channel material is also discussed. Finally, gated thin film resistor structures are designed and compared to the conventional MOSFET structure with a focus on their relative performance and process complexity trade-off for future 3D-IC implementation.

Book Silicon Germanium Materials and Devices   A Market and Technology Overview to 2006

Download or read book Silicon Germanium Materials and Devices A Market and Technology Overview to 2006 written by R. Szweda and published by Elsevier. This book was released on 2002-11-26 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 examines the development of the silicon germanium business over a six-year period 2001 to 2006. It analyses the trends in markets, technologies and industry structure and profiles all the major players. It is specifically aimed at users and manufacturers of substrates, epiwafers, equipment and devices. The analysis includes a competitive assessment of the market of silicon germanium vs. gallium arsenide, indium phosphide vs. other forms of silicon. Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 is designed to assist with business plans, R&D and manufacturing strategies. It will be an indispensable aid for managers responsible for business development, technology assessment and market research. The report examines the rapid development of silicon germanium from an R&D curiosity to production status. An extensive treatment from materials through processes to devices and applications it encapsulates the entire silicon germanium business of today and assesses future directions. For a PDF version of the report please call Tina Enright on +44 (0) 1865 843008 for price details.

Book Photonic Integration and Photonics Electronics Convergence on Silicon Platform

Download or read book Photonic Integration and Photonics Electronics Convergence on Silicon Platform written by Koji Yamada and published by Frontiers Media SA. This book was released on 2015-11-10 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.

Book Silicon  Germanium  and Their Alloys

Download or read book Silicon Germanium and Their Alloys written by Gudrun Kissinger and published by CRC Press. This book was released on 2014-12-09 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the vast knowledge accumulated on silicon, germanium, and their alloys, these materials still demand research, eminently in view of the improvement of knowledge on silicon-germanium alloys and the potentialities of silicon as a substrate for high-efficiency solar cells and for compound semiconductors and the ongoing development of nanodevic

Book Electrochemically Deposited Germanium on Silicon and Its Crystallization by Rapid Melting Growth

Download or read book Electrochemically Deposited Germanium on Silicon and Its Crystallization by Rapid Melting Growth written by Mastura Shafinaz Zainal Abidin and published by . This book was released on 2014 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Future Trends in Microelectronics

Download or read book Future Trends in Microelectronics written by Serge Luryi and published by John Wiley & Sons. This book was released on 2007-06-22 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed: Does CMOS technology have a real problem? Do transistors have to be smaller or just better and made of better materials? What is to come after semiconductors? Superconductors or molecular conductors? Is bottom-up self-assembling the answer to the limitation of top-down lithography? Is it time for Optics to become a force in computer evolution? Quantum Computing, Spintronics? Where is the printable plastic electronics proposed 10 years ago? Are carbon nanotube transistors the CMOS of the future?

Book Silicon Germanium  Technology  Modeling  and Design

Download or read book Silicon Germanium Technology Modeling and Design written by Raminderpal Singh and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "An excellent introduction to the SiGe BiCMOS technology, from the underlying device physics to current applications."--Ron Wilson, EETimes"SiGe technology has demonstrated the ability to provide excellent high-performance characteristics with very low noise, at high power gain, and with excellent linearity. This book is a comprehensive review of the technology and of the design methods that go with it."-Alberto Sangiovanni-VincentelliProfessor, University of California, BerkeleyCofounder, Chief Technology Officer, Member of Board Cadence Design Systems Inc. Filled with in-depth insights and expert advice, Silicon Germanium covers all the key aspects of this technology and its applications. Beginning with a brief introduction to and historical perspective of IBM's SiGe technology, this comprehensive guide quickly moves on to:*Detail many of IBM's SiGe technology development programs*Explore IBM's approach to device modeling and characterization-including predictive TCAD modeling*Discuss IBM's design automation and signal integrity knowledge and implementation methodologies*Illustrate design applications in a variety of IBM's SiGe technologies*Highlight details of highly integrated SiGe BiCMOS system-on-chip (SOC) designWritten for RF/analog and mixed-signal designers, CAD designers, semiconductor students, and foundry process engineers worldwide, Silicon Germanium provides detailed insight into the modeling and design automation requirements for leading-edge RF/analog and mixed-signal products, and illustrates in-depth applications that can be implemented using IBM's advanced SiGe process technologies and design kits. "This volume provides an excellent introduction to the SiGe BiCMOS technology, from the underlying device physics to current applications. But just as important is the window the text provides into the infrastructure-the process development, device modeling, and tool development."-Ron WilsonSilicon Engineering Editor, EETimes"This book chronicles the development of SiGe in detail, provides an in-depth look at the modeling and design automation requirements for making advanced applications using SiGe possible, and illustrates such applications as implemented using IBM's process technologies and design methods."-John KellySenior Vice President and Group Executive, Technology Group, IBM

Book Germanium Based Technologies

Download or read book Germanium Based Technologies written by Cor Claeys and published by Elsevier. This book was released on 2011-07-28 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium-Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge-technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book. State-of-the-art information available for the first time as an all-in-source Extensive reference list making it an indispensable reference book Broad coverage from fundamental aspects up to industrial applications

Book Single crystal Germanium Growth on Amorphous Silicon

Download or read book Single crystal Germanium Growth on Amorphous Silicon written by Kevin A. McComber and published by . This book was released on 2011 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integration of photonics with electronics has emerged as a leading platform for microprocessor technology and the continuation of Moore's Law. As electronic device dimensions shrink, electronic signals encounter crippling delays and heating issues such that signal transduction across large on-chip distances becomes increasingly more difficult. However, these issues may be mitigated by the use of photonic interconnects combined with electronic devices in electronic-photonic integrated circuits (EPICs). The electronics in proposed EPIC designs perform the logic operations and short-distance signal transmission, while photonic devices serve to transmit signals over longer lengths. However, the photonic devices are large compared to electronic devices, and thus the two types of devices would ideally exist on separate levels of the microprocessor stack in order to maximize the amount of silicon substrate available for electronic device fabrication. A CMOS-compatible back-end process for the fabrication of photonic devices is necessary to realize such a three-dimensional EPIC. Back-end processing is limited in thermal budget and does not present a single-crystal substrate for epitaxial growth, however, so high-quality crystal fabrication methods currently used for photonic device fabrication are not possible in back-end processing. This thesis presents a method for the fabrication of high-quality germanium single crystals using CMOS-compatible back-end processing. Initial work on the ultra-high vacuum chemical vapor deposition of polycrystalline germanium on amorphous silicon is presented. The deposition can be successfully performed by using a pre-growth hydrofluoric acid dip and by limiting the thickness of the amorphous silicon layer to less than 120 nm. Films deposited at temperatures of 350° C, 450° C, and 550° C show (110) texture, though the texture is most prevalent in growths at 450° C. Poly-Ge grown at 4500 C is successfully doped n-type in situ, and the grain size of as-grown material is enhanced by lateral growth over a barrier. Structures are fabricated for the growth of Ge confined in one dimension. The growths show faceting across large areas, in contrast to as-deposited poly-Ge, corresponding to enhanced grain sizes. Growth confinement is shown to reduce the defect density as the poly-Ge grows. When coalesced into a continuous film, the material grown from 1 D confinement exhibits a lower carrier density and lower trap density than as-deposited poly-Ge, indicating improved material quality. We measure an increased grain size from as-deposited poly-Ge to Ge grown from ID confinement. Single-crystal germanium is grown at 450° C from confinement in two dimensions. Such growths exhibit faceting across the entire crystal as well as the presence of E3 boundaries ({111} twins), with many growths showing no other boundaries. These twins mediate the growth of the crystal, as they serve as the points for heterogeneous surface nucleation of adatom clusters. The twins can form after the crystal nucleates and are strongly preferred in order to obtain appreciable crystal growth rates. We model the growths from the confining channels in order to find the optimum channel geometry for large, uniform, single-crystal growths that consistently emerge from the channel. The growths from 2D confinement show lower trap density than those from 1 D confinement, indicating a further enhancement of the crystal quality due to the increased confinement. This method of single-crystal growth from an amorphous substrate is extensible to any materials system in which selective non-epitaxial deposition is possible.

Book Germanium silicon Strained Layers and Heterostructures

Download or read book Germanium silicon Strained Layers and Heterostructures written by Suresh C. Jain and published by . This book was released on 1994 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biaxial strain in coherent GeSi layers grown on Si substrates provides a powerful tool for tailoring bandgaps and band offsets. Extremely high electron and hole mobilities have been obtained in modulation-doped GeSi strained layer heterostructures. Ultra-high-speed Heterojunction Bipolar Transistors and MODFETs, and long wavelength (1 to 20 micrometre) IR Detectors have been fabricated using these layers. Quantum wells, ultra-thin period superlattices, and quantum dots can also be fabricated using the strained layers. These devices were previously implemented using III-V semiconductors. Now they can be fabricated using existing Si technology, which is mature and reliable. GeSi strained layer technology has made it possible to manufacture monolithic Si integrated circuits containing heterojunction devices.

Book Design and Process for Three dimensional Heterogeneous Integration

Download or read book Design and Process for Three dimensional Heterogeneous Integration written by Shu-Lu Chen and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the invention of the integrated circuit (IC) in the late 1950s, the semiconductor industry has experienced dramatic growth driven by both technology and manufacturing improvements. Over the past 40 years, the industry's growth trend has been predicted by Moore's law, and driven by the constant electrical field scaling design methodology. While the intrinsic performance of each device improves over generations, the corresponding interconnects do not. To alleviate this interconnect issue, a three-dimensional (3D) integration concept of transforming longer side to side interconnects into shorter vertical vias by using multiple active layers has attracted much attention. The focus of this thesis is on providing the foundation for 3D heterogeneous integration by investigating methods of growing single crystal materials on the silicon platform and the subsequent low-temperature process flow, through experimental demonstration, theoretical modeling and device structure simplification. First, thin film single crystal GaAs and GaSb were grown on dielectric layers on bulk silicon substrates by the rapid melt growth (RMG) method, using both rapid thermal annealing (RTA) and laser annealing. The relationship between stoichiometry and the crystal structure is discussed according to the theoretical phase diagram and the experimental results. A modified RMG structure is also proposed and demonstrated to solve the potential issue involved in integrating the RMG method into a three-dimensional integrated circuits (3D-IC) process with thick isolation layers. In order to estimate the outcome of the crystallization and to provide further understanding of the physics behind this RMG process, compact models are derived based on classical crystallization theory. Mathematical models including the geometry, the thermal environment and the outcome of the crystallization are built. The initial cooling rate is identified as the key factor for the RMG process. With the ability of integrating multiple materials on silicon substrates, the subsequent process flows using low-temperature-fabrication or simplified device structures are proposed and evaluated to achieve high density 3D integration. A "bonding substrate/monolithic contact" approach is proposed to relieve the thermal constraint from getting the starting single crystal layer without sacrificing the interconnect performance. A low-temperature process using germanium as the channel material is also discussed. Finally, gated thin film resistor structures are designed and compared to the conventional MOSFET structure with a focus on their relative performance and process complexity trade-off for future 3D-IC implementation.

Book Silicon Germanium

Download or read book Silicon Germanium written by and published by Technical Insights. This book was released on 1997-01-01 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Germanium

Download or read book Silicon Germanium written by Savage and published by Wiley. This book was released on 1997-12-31 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 88-page exclusive report is the first comprehensive overview to separate the real from the hype of this emerging technology. It explains the new technology, the solutions and the challenges it offers to developers of high-speed electronic devices. Silicon Germanium spotlights the technology programs and offerings of 22 companies, and the work of 34 universities and research institutions worldwide. It explores the prospects for Silicon Germanium (SiGe) in the marketplace, and the most promising opportunities in this exploding market. Provides names, addresses, phone and fax numbers and e-mail addresses of the principal players so you can contact them directly. Also provides a list of key patent holders.

Book Properties of Silicon Germanium and SiGe Carbon

Download or read book Properties of Silicon Germanium and SiGe Carbon written by Erich Kasper and published by Inst of Engineering & Technology. This book was released on 2000 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The industrial relevance of SiGe has increased dramatically in the last few years with the manufacture of heterojunction bipolar circuits for the commercial wireless and datacomms markets by IBM and TEMIC. Major high technology companies see the development and use of SiGe as an important part of their strategy, so that there is a strong impetus to improve its characterization and exploitation. This liberally illustrated and fully indexed volume distills in a homogeneous, structured way the expertise of some 40 invited authors to comprehensively review the whole range of properties as well as SiGe; C, self-assembled nanostructures, quantum effects and device trends.

Book Numerical Simulation of Growth of Silicon Germanium Single Crystals

Download or read book Numerical Simulation of Growth of Silicon Germanium Single Crystals written by Mandeep Sekhon and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: SixGe1-x is a promising alloy semiconductor material that is gaining importance in the semiconductor industry primarily due to the fact that silicon and germanium form a binary isomorphous system and hence its properties can be adapted to suit the needs of a particular application. Liquid phase diffusion (LPD) is a solution growth technique which has been successfully used to grow single crystals of SixGe1-x. The first part of this thesis discusses the development of a fixed grid solver to simulate the LPD growth under zero gravity condition. Initial melting is modeled in order to compute the shape of the initial growth interface along with temperature and concentration distribution. This information is then used by the solidification solver which in turn predicts the onset of solidification, evolution of the growth interface, and temperature and concentration fields as the solidification proceeds. The results are compared with the previous numerical study conducted using the dynamic grid approach as well as with the earth based experimental results. The predicted results are found to be in good qualitative agreement although certain noticeable differences are also observed owing to the absence of convective effects in the fixed grid model. The second part investigates the effects of crucible translation on the LPD technique using the dynamic grid approach. The case of constant pulling is examined first and compared with the available experimental results. Then a dynamic pulling profile obtained as a part of simulation process is used to achieve the goal of nearly uniform composition crystal. The effect of crucible translation on the interface shape, growth rate, and on the transport process is investigated. Finally, the effect of magnetic field on the LPD growth is examined.