Download or read book Probability and Random Processes written by Scott Miller and published by Academic Press. This book was released on 2012-01-11 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques.
Download or read book Probability Random Variables and Random Processes written by John J. Shynk and published by John Wiley & Sons. This book was released on 2012-10-15 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.
Download or read book An Introduction to Statistical Signal Processing written by Robert M. Gray and published by Cambridge University Press. This book was released on 2004-12-02 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Download or read book Introduction to Random Processes written by William A. Gardner and published by McGraw-Hill Companies. This book was released on 1990-01 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Random Processes for Image and Signal Processing written by Edward R. Dougherty and published by SPIE-International Society for Optical Engineering. This book was released on 1999 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate students with a strong background in probability and as a graduate text in image processing courses.
Download or read book Random Signal Processing written by Shaila Dinkar Apte and published by CRC Press. This book was released on 2017-08-15 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers random signals and random processes along with estimation of probability density function, estimation of energy spectral density and power spectral density. The properties of random processes and signal modelling are discussed with basic communication theory estimation and detection. MATLAB simulations are included for each concept with output of the program with case studies and project ideas. The chapters progressively introduce and explain the concepts of random signals and cover multiple applications for signal processing. The book is designed to cater to a wide audience starting from the undergraduates (electronics, electrical, instrumentation, computer, and telecommunication engineering) to the researchers working in the pertinent fields. Key Features: • Aimed at random signal processing with parametric signal processing-using appropriate segment size. • Covers speech, image, medical images, EEG and ECG signal processing. • Reviews optimal detection and estimation. • Discusses parametric modeling and signal processing in transform domain. • Includes MATLAB codes and relevant exercises, case studies and solved examples including multiple choice questions
Download or read book Multidimensional Signal Image and Video Processing and Coding written by John W. Woods and published by Academic Press. This book was released on 2011-05-31 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional Signal, Image, and Video Processing and Coding gives a concise introduction to both image and video processing, providing a balanced coverage between theory, applications and standards. It gives an introduction to both 2-D and 3-D signal processing theory, supported by an introduction to random processes and some essential results from information theory, providing the necessary foundation for a full understanding of the image and video processing concepts that follow. A significant new feature is the explanation of practical network coding methods for image and video transmission. There is also coverage of new approaches such as: super-resolution methods, non-local processing, and directional transforms. Multidimensional Signal, Image, and Video Processing and Coding also has on-line support that contains many short MATLAB programs that complement examples and exercises on multidimensional signal, image, and video processing. There are numerous short video clips showing applications in video processing and coding, plus a copy of the vidview video player for playing .yuv video files on a Windows PC and an illustration of the effect of packet loss on H.264/AVC coded bitstreams. New to this edition: - New appendices on random processes, information theory - New coverage of image analysis – edge detection, linking, clustering, and segmentation - Expanded coverage on image sensing and perception, including color spaces - Now summarizes the new MPEG coding standards: scalable video coding (SVC) and multiview video coding (MVC), in addition to coverage of H.264/AVC - Updated video processing material including new example on scalable video coding and more material on object- and region-based video coding - More on video coding for networks including practical network coding (PNC), highlighting the significant advantages of PNC for both video downloading and streaming - New coverage of super-resolution methods for image and video - Only R&D level tutorial that gives an integrated treatment of image and video processing - topics that are interconnected - New chapters on introductory random processes, information theory, and image enhancement and analysis - Coverage and discussion of the latest standards in video coding: H.264/AVC and the new scalable video standard (SVC)
Download or read book Probability Random Processes and Statistical Analysis written by Hisashi Kobayashi and published by Cambridge University Press. This book was released on 2011-12-15 with total page 813 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Download or read book Random Processes for Engineers written by Bruce Hajek and published by Cambridge University Press. This book was released on 2015-03-12 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Download or read book Introduction to Random Signals and Noise written by Wim C. Van Etten and published by John Wiley & Sons. This book was released on 2006-02-03 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals. Key features: Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains. Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver. Examines optimal filtering methods and their consequences. Presents a detailed discussion of the topic of Poisson processes and shot noise. An excellent resource for professional engineers developing communication systems, semiconductor devices, and audio and video equipment, this book is also ideal for senior undergraduate and graduate students in Electronic and Electrical Engineering.
Download or read book Random Signals and Processes Primer with MATLAB written by Gordana Jovanovic Dolecek and published by Springer Science & Business Media. This book was released on 2012-08-21 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides anyone needing a primer on random signals and processes with a highly accessible introduction to these topics. It assumes a minimal amount of mathematical background and focuses on concepts, related terms and interesting applications to a variety of fields. All of this is motivated by numerous examples implemented with MATLAB, as well as a variety of exercises at the end of each chapter.
Download or read book Intuitive Probability and Random Processes using MATLAB written by Steven Kay and published by Springer Science & Business Media. This book was released on 2006-03-20 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intuitive Probability and Random Processes using MATLAB® is an introduction to probability and random processes that merges theory with practice. Based on the author’s belief that only "hands-on" experience with the material can promote intuitive understanding, the approach is to motivate the need for theory using MATLAB examples, followed by theory and analysis, and finally descriptions of "real-world" examples to acquaint the reader with a wide variety of applications. The latter is intended to answer the usual question "Why do we have to study this?" Other salient features are: *heavy reliance on computer simulation for illustration and student exercises *the incorporation of MATLAB programs and code segments *discussion of discrete random variables followed by continuous random variables to minimize confusion *summary sections at the beginning of each chapter *in-line equation explanations *warnings on common errors and pitfalls *over 750 problems designed to help the reader assimilate and extend the concepts Intuitive Probability and Random Processes using MATLAB® is intended for undergraduate and first-year graduate students in engineering. The practicing engineer as well as others having the appropriate mathematical background will also benefit from this book. About the Author Steven M. Kay is a Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing. He has received the Education Award "for outstanding contributions in education and in writing scholarly books and texts..." from the IEEE Signal Processing society and has been listed as among the 250 most cited researchers in the world in engineering.
Download or read book Applied Digital Signal Processing written by Dimitris G. Manolakis and published by Cambridge University Press. This book was released on 2011-11-21 with total page 1009 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the basic concepts and methodologies of digital signal processing with this systematic introduction, without the need for an extensive mathematical background. The authors lead the reader through the fundamental mathematical principles underlying the operation of key signal processing techniques, providing simple arguments and cases rather than detailed general proofs. Coverage of practical implementation, discussion of the limitations of particular methods and plentiful MATLAB illustrations allow readers to better connect theory and practice. A focus on algorithms that are of theoretical importance or useful in real-world applications ensures that students cover material relevant to engineering practice, and equips students and practitioners alike with the basic principles necessary to apply DSP techniques to a variety of applications. Chapters include worked examples, problems and computer experiments, helping students to absorb the material they have just read. Lecture slides for all figures and solutions to the numerous problems are available to instructors.
Download or read book Probability and Random Processes for Electrical and Computer Engineers written by John A. Gubner and published by Cambridge University Press. This book was released on 2006-06-01 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701.
Download or read book Computational Information Geometry written by Frank Nielsen and published by Springer. This book was released on 2016-11-24 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.
Download or read book Image Processing for Remote Sensing written by C.H. Chen and published by CRC Press. This book was released on 2007-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for
Download or read book Signal Processing for Neuroscientists written by Wim van Drongelen and published by Elsevier. This book was released on 2006-12-18 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670