Download or read book Essentials of Radiographic Physics and Imaging written by James Johnston and published by Elsevier Health Sciences. This book was released on 2015-11-04 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by radiographers for radiographers, Essentials of Radiographic Physics and Imaging, 2nd Edition follows the ASRT recommended curriculum and focuses on what the radiographer needs to understand to safely and competently perform radiographic examinations. This comprehensive radiologic physics and imaging text links the two subjects together so that you understand how they relate to each other - and to clinical practice. Prepare for success on the ARRT exam and the job with just the right amount of information on radiation production and characteristics, imaging equipment, film screen image acquisition and processing, digital image acquisition and display, image analysis, and the basic principles of computed tomography. 345 photos and line drawings encourage you to visualize important concepts. Strong pedagogy, including chapter objectives, key terms, outlines, bulleted chapter summaries, and specialty boxes, help you organize information and focus on what is most important in each chapter. Make the Physics Connection and Make the Imaging Connection boxes link physics and imaging concepts so you fully appreciate the importance of both subjects. Educator resources on Evolve, including lesson plans, an image collection, PowerPoint presentations, and a test bank, provide additional resources for instructors to teach the topics presented in the text. Theory to Practice boxes succinctly explain the application of concepts and describe how to use the information in clinical practice. Critical Concept boxes further explain and emphasize key points in the chapters. Math Application boxes use examples to show how mathematical concepts and formulas are applied in the clinical setting. An emphasis on the practical information highlights just what you need to know to ace the ARRT exam and become a competent practitioner. Numerous critique exercises teach you how to evaluate the quality of radiographic images and determine which factors produce poor images. A glossary of key terms serves as a handy reference. NEW! Updated content reflects the newest curriculum standards outlined by the ARRT and ASRT, providing you with the information you need to pass the boards. NEW! Critical Thinking Questions at the end of every chapter offer opportunity for review and greater challenge. NEW! Chapter Review Questions at the end of every chapter allow you to evaluate how well you have mastered the material in each chapter. NEW! Increased coverage of radiation protection principles helps you understand the ethical obligations to minimize radiation dosages, shielding, time and distance, how to limit the field of exposure and what that does to minimize dose, and technical factors and how they represent the quantity and quality of radiation. NEW! Conversion examples and sample math problems give you the practice needed to understand complex concepts. NEW! More images highlighting key concepts help you visualize the material. NEW! Expansion of digital image coverage and ample discussion on differentiating between digital and film ensures you are prepared to succeed on your exams. NEW! All-new section on manual vs. AEC use in Chapter 13 keeps you in the know. NEW and UPDATED! Expanded digital fluoroscopy section, including up-to-date information on LCD and Plasma displays, familiarizes you with the equipment you will encounter. NEW! Online chapter quizzes on Evolve feature 5-10 questions each and reinforce key concepts. NEW! PowerPoint presentations with new lecture notes on Evolve and in-depth information in the notes section of each slide make presenting quick and easy for instructors.
Download or read book Diagnostic Radiology Physics written by International Atomic Energy Agency and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.
Download or read book The Physics of Radiology and Imaging written by K Thayalan and published by JP Medical Ltd. This book was released on 2014-05-30 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the principles, instrumentation, function, application and limitations of all radiological techniques – radiography, fluoroscopy, mammography, computed tomography, ultrasound and magnetic resonance imaging. Beginning with an introduction to the fundamental concepts, the following chapters provide in depth coverage of each of the techniques from the perspective of a medical physicist. Presented in an easy to read format, this book is an invaluable reference for postgraduate students in medical physics and radiology and candidates training for FRCR exams. It includes nearly 280 images, illustrations and tables to enhance learning. Key points Explains principles, instrumentation, function, application and limitations of all radiological techniques Presented from perspective of medical physicists Includes nearly 280 images, illustrations and tables Highly useful for postgraduates in medical physics and radiology, and FRCR candidates
Download or read book Review of Radiologic Physics written by William Sensakovic and published by Lippincott Williams & Wilkins. This book was released on 2023-07-24 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a complete review for radiology residents and radiologic technologists preparing for certification, Review of Radiologic Physics, 5th Edition, by Dr. William F. Sensakovic, is a high-yield, efficient resource for today’s clinically focused exams. Now fully up to date, this edition covers x-ray production and interactions, projection and tomographic imaging, image quality, radiobiology, radiation protection, nuclear medicine, ultrasound, and magnetic resonance—all of the important physics information you need to understand the factors that improve or degrade image quality.
Download or read book Physics for Diagnostic Radiology Third Edition written by Philip Palin Dendy and published by CRC Press. This book was released on 1999-05-01 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics for Diagnostic Radiology, Second Edition is a complete course for radiologists studying for the FRCR part one exam and for physicists and radiographers on specialized graduate courses in diagnostic radiology. It follows the guidelines issued by the European Association of Radiology for training. A comprehensive, compact primer, its analytical approach deals in a logical order with the wide range of imaging techniques available and explains how to use imaging equipment. It includes the background physics necessary to understand the production of digitized images, nuclear medicine, and magnetic resonance imaging.
Download or read book Christensen s Physics of Diagnostic Radiology written by Thomas S. Curry and published by Lippincott Williams & Wilkins. This book was released on 1990 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth Edition of this text provides a clear understanding of the physics principles essential to getting maximum diagnostic value from the full range of current and emerging imaging technologies. Updated material added in areas such as x-ray generators (solid-state devices), xerography (liquid toner), CT scanners (fast-imaging technology) and ultrasound (color Doppler).
Download or read book Radiologic Physics The Essentials written by Zhihua Qi and published by Lippincott Williams & Wilkins. This book was released on 2019-09-23 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perfect for residents to use during rotations, or as a quick review for practicing radiologists and fellows, Radiologic Physics: The Essentials is a complete, concise overview of the most important knowledge in this complex field. Each chapter begins with learning objectives and ends with board-style questions that help you focus your learning. A self-assessment examination at the end of the book tests your mastery of the content and prepares you for exams.
Download or read book Handbook of X ray Imaging written by Paolo Russo and published by CRC Press. This book was released on 2017-12-14 with total page 1477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world’s leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world. The book's scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging. The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered. This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques. The handbook's editor, Dr. Paolo Russo, has over 30 years’ experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics. Features: Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing The first handbook published to be dedicated to the physics and technology of X-rays Handbook edited by world authority, with contributions from experts in each field
Download or read book Principles of Radiological Physics written by Donald T. Graham and published by . This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is directed primarily towards health care professionals outside of the United States. It provides easy-to-follow and comprehensive coverage of all the essential principles of physics that undergraduate diagnostic radiography students need to know in order to operate diagnostic equipment more easily, effectively and safely. It also covers the basic physics that therapeutic radiographers require in order to provide optimal treatment to their patients. "Aims" at start of each chapter encapsulate chapter contents, and "Summaries" at end of each chapter highlight key points "Insights" and "definitions" throughout text expand and clarify content Self-test questions at end of each chapter and a detailed answer section at the end of the book facilitate learning. New chapter on orthovoltage generators and linear accelerators increases coverage of radiotherapy physics New appendix on PET scanning More comprehensive appendices on ultrasound and CT scanning Chapter on magnetism substantially revised to include MRI Text updated to reflect latest technical changes such as the development of digital techniques with the potential to make greater use of teleradiology About 40 new illustrations to accompany new text
Download or read book Imaging Physics Case Review E Book written by R. Brad Abrahams and published by Elsevier Health Sciences. This book was released on 2019-01-01 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the critical physics content you need to know with this new title in the popular Case Review series. Imaging Physics Case Review offers a highly illustrated, case-based preparation for board review to help residents and recertifying radiologists succeed on exams and demonstrate a clinical understanding of physics, patient safety, and improvement of imaging accuracy and interpretation. - Presents 150 high-yield case studies organized by level of difficulty, with multiple-choice questions, answers, and rationales that mimic the format of certification exams. - Uses short, easily digestible chapters and high-quality illustrations for efficient, effective learning and exam preparation. - Discusses current advances in all modalities, ensuring that your study is up-to-date and clinically useful. - Covers today's key physics topics including radiation safety and methods to prevent patient harm; how to reduce artifacts; basics of radiation doses including dose reduction strategies; cardiac CT physics; advanced ultrasound techniques; and how to optimize image quality using physics principles. - Enhanced eBook version included with purchase, which allows you to access all of the text, figures, and references from the book on a variety of devices
Download or read book Fundamental Physics of Radiology written by W. J. Meredith and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Physics of Radiology, Third Edition provides a general introduction to the methods involving radioactive isotopes and ultrasonic radiations. This book provides the fundamental principles upon which the clinical uses of radioactive isotopes and ultrasonic radiation depend. Organized into four sections encompassing 45 chapters, this edition begins with an overview of the basic facts about matter and energy. This text then examines the technical details of some practical X-ray tubes. Other chapters consider the action of the X-rays on the screen to produce an emission of visible light photons in amount proportional to the incident X-ray intensity. This book discusses as well the fundamental aspects of the physical principles of radiotherapy, in which most attention is being given to gamma- and X-rays. The final chapter deals with the provision of adequate barriers and protective devices to guarantee the safety of the workers concerned. This book is a valuable resource for radiologists, physicists, and scientists.
Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Download or read book The Essential Physics of Medical Imaging written by Jerold T. Bushberg and published by Lippincott Williams & Wilkins. This book was released on 2020-11-24 with total page 1688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Widely regarded as the cornerstone text in the field, the successful series of editions continues to follow the tradition of a clear and comprehensive presentation of the physical principles and operational aspects of medical imaging. The Essential Physics of Medical Imaging, 4th Edition, is a coherent and thorough compendium of the fundamental principles of the physics, radiation protection, and radiation biology that underlie the practice and profession of medical imaging. Distinguished scientists and educators from the University of California, Davis, provide up-to-date, readable information on the production, characteristics, and interactions of non-ionizing and ionizing radiation, magnetic fields and ultrasound used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography, magnetic resonance, ultrasound, and nuclear medicine. This vibrant, full-color text is enhanced by more than 1,000 images, charts, and graphs, including hundreds of new illustrations. This text is a must-have resource for medical imaging professionals, radiology residents who are preparing for Core Exams, and teachers and students in medical physics and biomedical engineering.
Download or read book Medical Imaging Physics written by William R. Hendee and published by Wiley-Liss. This book was released on 2002 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Hendee and Russell Ritenour's comprehensive text provides the tools necessary to be comfortable with the physical principles, technology concepts, equiment, and procedures used in diagnostic imaging, as well as to appreciate the technological capabilities and limitations of the discipline. Readers need not possess a background in physics. Broadly accessible, Medical Imaging Physics covers all aspects of image formation in modern medical imaging modalities, such as radiography, ultrasonography, computed tomopgraphy(CT), nuclear imaging, and magnetic resonance. Other topics covered include; Digital x-ray imaging Doppler ultrasound Helical CT scanning Accumulation and analysis of nuclear data Experimental radiobiology Radiation protection and safety
Download or read book Farr s Physics for Medical Imaging written by Penelope J. Allisy-Roberts and published by Elsevier Health Sciences. This book was released on 2007-11-14 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is directed primarily towards health care professionals outside of the United States. The new edition has been fully updated to reflect the latest advances in technology and legislation and the needs of today's radiology trainees. Invaluable reading, particularly for those sitting the primary and final examinations of the Royal College of Radiology, UK, the book will also be of value to radiographers and personnel interested in medical imaging. The concise text is also accompanied by clear line drawings and sample images to illustrate the principles discussed. Closely matches needs of FRCR examination candidates. Updated to reflect changes to FRCR examination. More medically orientated. Covers new legislation concerning radiological safety etc. 'Must-know' summaries at end of each chapter. Completely new design.
Download or read book The Essential Physics of Medical Imaging written by Jerrold T. Bushberg and published by Lippincott Williams & Wilkins. This book was released on 2011-12-28 with total page 1049 pages. Available in PDF, EPUB and Kindle. Book excerpt: This renowned work is derived from the authors' acclaimed national review course (“Physics of Medical Imaging") at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams.
Download or read book Principles and Applications of Radiological Physics written by Donald Graham and published by Churchill Livingstone. This book was released on 2012 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rev. ed. of: Principles of radiological physics / Donald T. Graham, Paul Cloke, Martin Vosper. 5th ed. 2007.