Download or read book Defects and Radiation Damage in Metals written by M. W. Thompson and published by Cambridge University Press. This book was released on 1974-09-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of radiation damage in solids generally has been stimulated by the technological demands of nuclear energy and space research. Professor Thompson's 1969 book discusses the basic atomic mechanisms which give rise to the main effects induced by radiation in metals, since it is in their relatively simple structures that the fundamental processes can be most easily identified. The first part of the book describes the nature of lattice defects in metal crystals. The presentation leads naturally into the discussion of radiation damage in the second part and recognises the important contribution that the study of irradiated metals has made to our general knowledge of defects. The wide coverage of this book includes developments in our understanding of collision cascades, of the clustering of point defects and the behaviour of impurities induced by irradiation.
Download or read book Application of Particle and Laser Beams in Materials Technology written by P. Misaelides and published by Springer Science & Business Media. This book was released on 1995-01-31 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and superhard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their quality. Application of Particle and Laser Beams in Materials Technology provides an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale are presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection. The book is divided into six thematic units: Fundamentals, Surface Analysis Techniques, Laser Beams in Materials Technology, Accelerator-Based Techniques in Materials Technology, Materials Modification and Synchrotron Radiation.
Download or read book Radiation Effects Computer Experiments written by J.R. Beeler and published by North Holland. This book was released on 1983 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Solids, Volume 13: Radiation Effects Computer Experiments provides guidance to persons interested in learning how to develop and use computer experiment programs to simulate defect production and annealing in solids. The book first elaborates on computer experiment methods and outline of defect properties computations. Topics include metal models used in defect property example calculations; configuration energy computation procedure; migration energy computation procedure; dynamical method; and Monte Carlo method. The publication also examines vacancies and divacancies and self interstitials. The manuscript takes a look at impurity atoms, defect migration, and vacancy clusters. Discussions focus on heterogeneous nucleation of vacancy clusters and voids, vacancy and divacancy migration, substitutional metallic large impurity atom, and vacancy clusters in face-centered cubic metals. The publication also tackles binary collision approximation cascade program construction and collision cascades and displacement spikes. The text is a valuable source of information for readers wanting to develop and use computer experiment programs to copy defect production and annealing in solids.
Download or read book Radiation Damage in Solids written by Douglas S. Billington and published by . This book was released on 1961 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Description for this book, Radiation Damage in Solids, will be forthcoming.
Download or read book Point Defects in Solids written by James H. Crawford and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1 of Point Defects in Solids has as its major emphasis defects in ionic solids. Volume 2 now extends this emphasis to semiconductors. The first four chapters treat in some detail the creation, kinetic behavior, inter actions, and physical properties of both simple and composite defects in a variety of semiconducting systems. Also included, as in Vol. 1, are chapters on special topics, namely phonon-defect interactions and defects in organic crystals. Defect behavior in semiconductors has been a subject of considerable interest since the discovery some twenty-five years ago that fast neutron irradiation profoundly affected the electrical characteristics of germanium and silicon. Present-day interest has been stimulated by such semiconductor applications as solar cell power plants for space stations and satellites and semiconductor particle and y-ray detectors, since in both radiation damage can cause serious deterioration. Of even greater practical concern is the need to understand particle damage in order to capitalize upon the develop ing technique of ion implantation as a means of device fabrication. Although the periodic international conferences on radiation effects in semiconductors have served the valuable function of summarizing the extensive work being done in this field, these proceedings are much too detailed and lack the background discussion needed to make them useful to the novice.
Download or read book Radiation Damage in Materials written by Yongqiang Wang and published by MDPI. This book was released on 2020-12-28 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.
Download or read book Fundamentals of Radiation Materials Science written by GARY S. WAS and published by Springer. This book was released on 2016-07-08 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Download or read book Characterisation of Radiation Damage by Transmission Electron Microscopy written by M.L Jenkins and published by CRC Press. This book was released on 2000-11-21 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characterization of Radiation Damage by Transmission Electron Microscopy details the electron microscopy methods used to investigate complex and fine-scale microstructures, such as those produced by fast-particle irradiation of metals or ion implantation of semiconductors. The book focuses on the methods used to characterize small point-defect clusters, such as dislocation loops, because the coverage in general microscopy textbooks is limited and omits many of the problems associated with the analysis of these defects. The book also describes in situ, high-resolution, and analytical techniques. Techniques are illustrated with examples, providing a solid overview of the contribution of TEM to radiation damage mechanisms. The book is most useful to researchers in, or entering into, the field of defect analysis in materials.
Download or read book Defects in Solids written by Richard J. D. Tilley and published by John Wiley & Sons. This book was released on 2008-10-10 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Download or read book Physics of Radiation Effects in Crystals written by R.A. Johnson and published by Elsevier. This book was released on 2012-12-02 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor materials, and radiation damage of semiconductors and superconductors.
Download or read book Radiation Defect Engineering written by Abrosimova Vera and published by World Scientific. This book was released on 2005-11-17 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing complexity of problems in semiconductor electronics and optoelectronics has exposed the insufficient potential of the technological doping processes currently used. One of the most promising techniques, which this book explores, is radiation doping: the intentional, directional modification of the properties of semiconductors under the action of various types of radiation. The authors consider the basic principles of proton interactions with single crystal semiconductors on the basis of both theory as well as practical results. All types of proton modifications of the materials known presently are analyzed in detail and exciting new fields of research in this direction are discussed.
Download or read book Radiation Effects in Materials written by Waldemar Alfredo Monteiro and published by BoD – Books on Demand. This book was released on 2016-07-20 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of radiation effects has developed as a major field of materials science from the beginning, approximately 70 years ago. Its rapid development has been driven by two strong influences. The properties of the crystal defects and the materials containing them may then be studied. The types of radiation that can alter structural materials consist of neutrons, ions, electrons, gamma rays or other electromagnetic waves with different wavelengths. All of these forms of radiation have the capability to displace atoms/molecules from their lattice sites, which is the fundamental process that drives the changes in all materials. The effect of irradiation on materials is fixed in the initial event in which an energetic projectile strikes a target. The book is distributed in four sections: Ionic Materials; Biomaterials; Polymeric Materials and Metallic Materials.
Download or read book Soft Matter Physics written by Maurice Kleman and published by Springer Science & Business Media. This book was released on 2007-05-28 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.
Download or read book Reliability And Radiation Effects In Compound Semiconductors written by Allan H Johnston and published by World Scientific. This book was released on 2010-04-27 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.
Download or read book Point Defects in Solids written by James H. Crawford and published by . This book was released on 1972 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Positrons in Solids written by P. Hautojärvi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: In condensed matter initially fast positrons annihilate after having reached equi librium with the surroundings. The interaction of positrons with matter is governed by the laws of ordinary quantum mechanics. Field theory and antiparticle properties enter only in the annihilation process leading to the emergence of energetic photons. The monitoring of annihilation radiation by nuclear spectroscopic methods provides valuable information on the electron-positron system which can directly be related to the electronic structure of the medium. Since the positron is a positive electron its behavior in matter is especially interesting to solid-state and atomic physi cists. The small mass quarantees that the positron is really a quantum mechanical particle and completely different from any other particles and atoms. Positron physics started about 25 years ago but discoveries of new features in its interac tion with matter have maintained continuous interest and increasing activity in the field. Nowadays it is becoming part of the "stock-in-trade" of experimental physics.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: