Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Download or read book Mathematisches Institut Georg august universit t G ttingen Seminars Summer Term 2004 written by Yuri Tschinkel and published by Universitätsverlag Göttingen. This book was released on 2004 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains lecture notes from the seminars [alpha]Number Theory", [alpha]Algebraic Geometry" and [alpha]Geometric methods in representation theory" which took place at the Mathematics Institute of the University of Göttingen during the Summer Term 2004. Most contributions report on recent work by the authors.
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Download or read book Hilbert s Tenth Problem Relations with Arithmetic and Algebraic Geometry written by Jan Denef and published by American Mathematical Soc.. This book was released on 2000 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bücchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation. The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory
Download or read book Kronecker s Jugendtraum and Modular Functions written by Serge G. Vlăduț and published by CRC Press. This book was released on 1991 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the second half of the 19th century, Leopold Kronecker cherished a dream, his Jugendtraum, that he should see the formulation of a complete theory of complex multiplication. Kronecker's papers devoted to his Jugendtraum constitute the foundations of the arithmetical theory of modular functions. Vladut has studied the dream, and traces the development of elliptic function theory from its genesis to its most recent achievements. Included is a reprint of Kronecker's 1886 paper which presents many of the principal ideas of the arithmetical theory of modular functions. Translated from the Russian. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Handbook of Algebra written by M. Hazewinkel and published by Elsevier. This book was released on 2009-07-08 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Download or read book Quaternion Algebras written by John Voight and published by Springer Nature. This book was released on 2021-06-28 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Download or read book Ranks of Elliptic Curves and Random Matrix Theory written by J. B. Conrey and published by Cambridge University Press. This book was released on 2007-02-08 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.
Download or read book Arithmetic Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2009 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.
Download or read book The Riemann Hypothesis in Characteristic p in Historical Perspective written by Peter Roquette and published by Springer. This book was released on 2018-09-28 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.
Download or read book Advances in Cryptology ASIACRYPT 2019 written by Steven D. Galbraith and published by Springer Nature. This book was released on 2019-11-25 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set of LNCS 11921,11922, and 11923 constitutes the refereed proceedings of the 25th International Conference on the Theory and Applications of Cryptology and Information Security, ASIACRYPT 2019, held in Kobe, Japan, in December 2019. The 71 revised full papers presented were carefully reviewed and selected from 307 submissions. They are organized in topical sections on Lattices; Symmetric Cryptography; Isogenies; Obfuscation; Multiparty Computation; Quantum; E-cash and Blockchain; Codes; Authenticated Encryption; Multilinear Maps; Homomorphic Encryption; Combinatorial Cryptography; Signatures; Public Key Encryption; Side Channels; Functional Encryption; Zero Knowledge.
Download or read book Arithmetic Geometry Number Theory and Computation written by Jennifer S. Balakrishnan and published by Springer Nature. This book was released on 2022-03-15 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.
Download or read book Women in Numbers Europe IV written by Ramla Abdellatif and published by Springer Nature. This book was released on with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Research Directions in Number Theory written by Jennifer S. Balakrishnan and published by Springer. This book was released on 2019-08-01 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Download or read book Finite Fields and Applications written by Dieter Jungnickel and published by Springer Science & Business Media. This book was released on 2001-03-20 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (University ofKarlsruhe), Stephen D. Cohen (University of Glasgow), Dieter Jungnickel (University of Augsburg, Chairman), Alfred Menezes (University of Waterloo), Gary L. Mullen (Pennsylvania State University), Ronald C. Mullin (University of Waterloo), Harald Niederreiter (Austrian Academy of Sciences), and Alexander Pott (University of Magdeburg). The program ofthe conference consisted offour full days and one halfday ofsessions, with 11 invited plenary talks andover80contributedtalks that re- quired three parallel sessions. This documents the steadily increasing interest in finite fields and their applications. Finite fields have an inherently fasci- nating structure and they are important tools in discrete mathematics. Their applications range from combinatorial design theory, finite geometries, and algebraic geometry to coding theory, cryptology, and scientific computing. A particularly fruitful aspect is the interplay between theory and applications which has led to many new perspectives in research on finite fields.