Download or read book Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics written by Vesna Todorčević and published by Springer. This book was released on 2020-08-15 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a research area in geometric function theory concerned with harmonic quasiconformal mappings and hyperbolic type metrics defined on planar and multidimensional domains. The classes of quasiconformal and quasiregular mappings are well established areas of study in this field as these classes are natural and fruitful generalizations of the class of analytic functions in the planar case. The book contains many concrete examples, as well as detailed proofs and explanations of motivations behind given results, gradually bringing the reader to the forefront of current research in the area. This monograph was written for a wide readership from graduate students of mathematical analysis to researchers working in this or related areas of mathematics who want to learn the tools or work on open problems listed in various parts of the book.
Download or read book Quasiconformal Mappings and Analysis written by Peter Duren and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: In honor of Frederick W. Gehring on the occasion of his 70th birthday, an international conference on ""Quasiconformal mappings and analysis"" was held in Ann Arbor in August 1995. The 9 main speakers of the conference (Astala, Earle, Jones, Kra, Lehto, Martin, Pommerenke, Sullivan, and Vaisala) provide broad expository articles on various aspects of quasiconformal mappings and their relations to other areas of analysis. 12 other distinguished mathematicians contribute articles to this volume.
Download or read book Moduli of Families of Curves for Conformal and Quasiconformal Mappings written by Alexander Vasilʹev and published by Springer Science & Business Media. This book was released on 2002-07-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmller spaces.
Download or read book Lectures on Quasiconformal Mappings written by Lars Valerian Ahlfors and published by American Mathematical Soc.. This book was released on 2006-07-14 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It is remarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This edition includes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these three new chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings.
Download or read book N Dimensional Quasiconformal QCf Mappings written by Petru Caraman and published by CRC Press. This book was released on 1974 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on n Dimensional Quasiconformal Mappings written by Jussi Väisälä and published by Springer. This book was released on 2006-11-15 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quasiconformal Mappings and Sobolev Spaces written by V.M. Gol'dshtein and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Ht moi ..., si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'~re of this series
Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane written by Kari Astala and published by Princeton University Press. This book was released on 2008-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Download or read book Quasiconformal Mappings Riemann Surfaces and Teichmuller Spaces written by Yunping Jiang and published by American Mathematical Soc.. This book was released on 2012 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Quasiconformal Mappings, Riemann Surfaces, and Teichmuller Spaces, held in honor of Clifford J. Earle, from October 2-3, 2010, in Syracuse, New York. This volume includes a wide range of papers on Teichmuller theory and related areas. It provides a broad survey of the present state of research and the applications of quasiconformal mappings, Riemann surfaces, complex dynamical systems, Teichmuller theory, and geometric function theory. The papers in this volume reflect the directions of research in different aspects of these fields and also give the reader an idea of how Teichmuller theory intersects with other areas of mathematics.
Download or read book Conformally Invariant Metrics and Quasiconformal Mappings written by Parisa Hariri and published by Springer Nature. This book was released on 2020-04-11 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.
Download or read book Quasiregular Mappings written by Seppo Rickman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book.
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MA THEMA TICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Download or read book Metric and Differential Geometry written by Xianzhe Dai and published by Springer Science & Business Media. This book was released on 2012-06-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kähler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Müller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang
Download or read book Conformal Geometry and Quasiregular Mappings written by Matti Vuorinen and published by Springer. This book was released on 2006-11-15 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook and of a research monograph: it is the first introduction to the subject available in English, contains nearly a hundred exercises, a survey of the subject as well as an extensive bibliography and, finally, a list of open problems.
Download or read book Quasiconformal Teichmuller Theory written by Frederick P. Gardiner and published by American Mathematical Soc.. This book was released on 2000 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Teichmüller space T(X) is the space of marked conformal structures on a given quasiconformal surface X. This volume uses quasiconformal mapping to give a unified and up-to-date treatment of T(X). Emphasis is placed on parts of the theory applicable to noncompact surfaces and to surfaces possibly of infinite analytic type. The book provides a treatment of deformations of complex structures on infinite Riemann surfaces and gives background for further research in many areas. These include applications to fractal geometry, to three-dimensional manifolds through its relationship to Kleinian groups, and to one-dimensional dynamics through its relationship to quasisymmetric mappings. Many research problems in the application of function theory to geometry and dynamics are suggested.
Download or read book Handbook of Complex Analysis written by Reiner Kuhnau and published by Elsevier. This book was released on 2004-12-09 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
Download or read book Quasiconformal Mappings and Their Applications written by Saminathan Ponnusamy and published by . This book was released on 2007 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Quasiconformal Mappings and their Applications covers conformal invariance and conformally invariant metrics, hyperbolic-type metrics and hyperbolic geodesics, isometries of relative metrics, uniform spaces and Gromov hyperbolicity, quasiregular mappings and quasiconformal mappings in n-space, universal Teichmuller space and related topics, quasiminimizers and potential theory, and numerical conformal mapping and circle packings."--BOOK JACKET.