EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Speedups in Query Complexity

Download or read book Quantum Speedups in Query Complexity written by Shalev Ben David and published by . This book was released on 2017 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we study randomized and quantum algorithms in the query complexity model. We investigate when and by how much quantum algorithms provide a speedup over the best possible classical algorithm in the query complexity setting. We introduce a total Boolean function that exhibits a power 2.5 quantum speedup compared to the best possible randomized algorithm. In the process, we introduce the "cheat sheet" method for turning partial Boolean functions into total Boolean functions, and examine some of its other applications. We also study lower bound techniques for randomized algorithms. We introduce a measure called randomized sabotage complexity which lower bounds randomized query complexity and behaves well under compositions. This tool for controlling the randomized query complexity of composed functions combines nicely with the cheat sheet technique, which often features composed functions in its applications. In addition, we study the quantum analogue of this tool, and use it to show a new power 5 relationship between zero-error and bounded-error quantum query complexity. Finally, we characterize the total Boolean functions that exhibit exponential quantum speedups when their domain is restricted to an arbitrarily chosen set. We show that such a "sculpting" of a quantum speedup is possible if and only if the original total function has many inputs with large certificate complexity. Along the way, we also show that functions defined on very small domains or that are very unbalanced can display at most a quadratic quantum speedup.

Book Query Complexity

    Book Details:
  • Author : Mario Szegedy
  • Publisher : World Scientific Publishing Company
  • Release : 2018-06-30
  • ISBN : 9789813223202
  • Pages : 200 pages

Download or read book Query Complexity written by Mario Szegedy and published by World Scientific Publishing Company. This book was released on 2018-06-30 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms

Download or read book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms written by SIAM Activity Group on Discrete Mathematics and published by SIAM. This book was released on 2006-01-01 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symposium held in Miami, Florida, January 22–24, 2006.This symposium is jointly sponsored by the ACM Special Interest Group on Algorithms and Computation Theory and the SIAM Activity Group on Discrete Mathematics.Contents Preface; Acknowledgments; Session 1A: Confronting Hardness Using a Hybrid Approach, Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo; A New Approach to Proving Upper Bounds for MAX-2-SAT, Arist Kojevnikov and Alexander S. Kulikov, Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm, Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch; A Polynomial Algorithm to Find an Independent Set of Maximum Weight in a Fork-Free Graph, Vadim V. Lozin and Martin Milanic; The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity, Wolfgang W. Bein, Mordecai J. Golin, Larry L. Larmore, and Yan Zhang; Session 1B: Local Versus Global Properties of Metric Spaces, Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala; Directed Metrics and Directed Graph Partitioning Problems, Moses Charikar, Konstantin Makarychev, and Yury Makarychev; Improved Embeddings of Graph Metrics into Random Trees, Kedar Dhamdhere, Anupam Gupta, and Harald Räcke; Small Hop-diameter Sparse Spanners for Doubling Metrics, T-H. Hubert Chan and Anupam Gupta; Metric Cotype, Manor Mendel and Assaf Naor; Session 1C: On Nash Equilibria for a Network Creation Game, Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty; Approximating Unique Games, Anupam Gupta and Kunal Talwar; Computing Sequential Equilibria for Two-Player Games, Peter Bro Miltersen and Troels Bjerre Sørensen; A Deterministic Subexponential Algorithm for Solving Parity Games, Marcin Jurdzinski, Mike Paterson, and Uri Zwick; Finding Nucleolus of Flow Game, Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun, Session 2: Invited Plenary Abstract: Predicting the “Unpredictable”, Rakesh V. Vohra, Northwestern University; Session 3A: A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem, Sven Koenig, Apurva Mudgal, and Craig Tovey; An Asymptotic Approximation Algorithm for 3D-Strip Packing, Klaus Jansen and Roberto Solis-Oba; Facility Location with Hierarchical Facility Costs, Zoya Svitkina and Éva Tardos; Combination Can Be Hard: Approximability of the Unique Coverage Problem, Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R. Salavatipour; Computing Steiner Minimum Trees in Hamming Metric, Ernst Althaus and Rouven Naujoks; Session 3B: Robust Shape Fitting via Peeling and Grating Coresets, Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu; Tightening Non-Simple Paths and Cycles on Surfaces, Éric Colin de Verdière and Jeff Erickson; Anisotropic Surface Meshing, Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger; Simultaneous Diagonal Flips in Plane Triangulations, Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood; Morphing Orthogonal Planar Graph Drawings, Anna Lubiw, Mark Petrick, and Michael Spriggs; Session 3C: Overhang, Mike Paterson and Uri Zwick; On the Capacity of Information Networks, Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman; Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding, Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Patrascu; Self-Improving Algorithms, Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu; Cake Cutting Really is Not a Piece of Cake, Jeff Edmonds and Kirk Pruhs; Session 4A: Testing Triangle-Freeness in General Graphs, Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron; Constraint Solving via Fractional Edge Covers, Martin Grohe and Dániel Marx; Testing Graph Isomorphism, Eldar Fischer and Arie Matsliah; Efficient Construction of Unit Circular-Arc Models, Min Chih Lin and Jayme L. Szwarcfiter, On The Chromatic Number of Some Geometric Hypergraphs, Shakhar Smorodinsky; Session 4B: A Robust Maximum Completion Time Measure for Scheduling, Moses Charikar and Samir Khuller; Extra Unit-Speed Machines are Almost as Powerful as Speedy Machines for Competitive Flow Time Scheduling, Ho-Leung Chan, Tak-Wah Lam, and Kin-Shing Liu; Improved Approximation Algorithms for Broadcast Scheduling, Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko; Distributed Selfish Load Balancing, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul Goldberg, Zengjian Hu, and Russell Martin; Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic Power Management, Philippe Baptiste; Session 4C: Rank/Select Operations on Large Alphabets: A Tool for Text Indexing, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao; O(log log n)-Competitive Dynamic Binary Search Trees, Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator; The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure, Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun; Design of Data Structures for Mergeable Trees, Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck; Implicit Dictionaries with O(1) Modifications per Update and Fast Search, Gianni Franceschini and J. Ian Munro; Session 5A: Sampling Binary Contingency Tables with a Greedy Start, Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda; Asymmetric Balanced Allocation with Simple Hash Functions, Philipp Woelfel; Balanced Allocation on Graphs, Krishnaram Kenthapadi and Rina Panigrahy; Superiority and Complexity of the Spaced Seeds, Ming Li, Bin Ma, and Louxin Zhang; Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time, Michael Krivelevich and Dan Vilenchik; Session 5B: Analysis of Incomplete Data and an Intrinsic-Dimension Helly Theorem, Jie Gao, Michael Langberg, and Leonard J. Schulman; Finding Large Sticks and Potatoes in Polygons, Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon; Randomized Incremental Construction of Three-Dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting, Haim Kaplan and Micha Sharir; Vertical Ray Shooting and Computing Depth Orders for Fat Objects, Mark de Berg and Chris Gray; On the Number of Plane Graphs, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado, and Hannes Krasser; Session 5C: All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time, Timothy M. Chan; An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph, Glencora Borradaile and Philip Klein; A Simple GAP-Canceling Algorithm for the Generalized Maximum Flow Problem, Mateo Restrepo and David P. Williamson; Four Point Conditions and Exponential Neighborhoods for Symmetric TSP, Vladimir Deineko, Bettina Klinz, and Gerhard J. Woeginger; Upper Degree-Constrained Partial Orientations, Harold N. Gabow; Session 7A: On the Tandem Duplication-Random Loss Model of Genome Rearrangement, Kamalika Chaudhuri, Kevin Chen, Radu Mihaescu, and Satish Rao; Reducing Tile Complexity for Self-Assembly Through Temperature Programming, Ming-Yang Kao and Robert Schweller; Cache-Oblivious String Dictionaries, Gerth Stølting Brodal and Rolf Fagerberg; Cache-Oblivious Dynamic Programming, Rezaul Alam Chowdhury and Vijaya Ramachandran; A Computational Study of External-Memory BFS Algorithms, Deepak Ajwani, Roman Dementiev, and Ulrich Meyer; Session 7B: Tight Approximation Algorithms for Maximum General Assignment Problems, Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko; Approximating the k-Multicut Problem, Daniel Golovin, Viswanath Nagarajan, and Mohit Singh; The Prize-Collecting Generalized Steiner Tree Problem Via A New Approach Of Primal-Dual Schema, Mohammad Taghi Hajiaghayi and Kamal Jain; 8/7-Approximation Algorithm for (1,2)-TSP, Piotr Berman and Marek Karpinski; Improved Lower and Upper Bounds for Universal TSP in Planar Metrics, Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton; Session 7C: Leontief Economies Encode NonZero Sum Two-Player Games, B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye; Bottleneck Links, Variable Demand, and the Tragedy of the Commons, Richard Cole, Yevgeniy Dodis, and Tim Roughgarden; The Complexity of Quantitative Concurrent Parity Games, Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger; Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints, Kamal Jain and Kasturi Varadarajan; Session 8A: Approximation Algorithms for Wavelet Transform Coding of Data Streams, Sudipto Guha and Boulos Harb; Simpler Algorithm for Estimating Frequency Moments of Data Streams, Lakshimath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha; Trading Off Space for Passes in Graph Streaming Problems, Camil Demetrescu, Irene Finocchi, and Andrea Ribichini; Maintaining Significant Stream Statistics over Sliding Windows, L.K. Lee and H.F. Ting; Streaming and Sublinear Approximation of Entropy and Information Distances, Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian; Session 8B: FPTAS for Mixed-Integer Polynomial Optimization with a Fixed Number of Variables, J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel; Linear Programming and Unique Sink Orientations, Bernd Gärtner and Ingo Schurr; Generating All Vertices of a Polyhedron is Hard, Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich; A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs, Anthony Man-Cho So and Yinyu Ye; Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments, Don Coppersmith, Lisa Fleischer, and Atri Rudra; Session 8C: Weighted Isotonic Regression under L1 Norm, Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang; Oblivious String Embeddings and Edit Distance Approximations, Tugkan Batu, Funda Ergun, and Cenk Sahinalp0898716012\\This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.

Book Lower Bounds in Communication Complexity

Download or read book Lower Bounds in Communication Complexity written by Troy Lee and published by Now Publishers Inc. This book was released on 2009 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The communication complexity of a function f(x, y) measures the number of bits that two players, one who knows x and the other who knows y, must exchange to determine the value f(x, y). Communication complexity is a fundamental measure of complexity of functions. Lower bounds on this measure lead to lower bounds on many other measures of computational complexity. This monograph surveys lower bounds in the field of communication complexity. Our focus is on lower bounds that work by first representing the communication complexity measure in Euclidean space. That is to say, the first step in these lower bound techniques is to find a geometric complexity measure, such as rank or trace norm, that serves as a lower bound to the underlying communication complexity measure. Lower bounds on this geometric complexity measure are then found using algebraic and geometric tools.

Book Efficient Algorithms in Quantum Query Complexity

Download or read book Efficient Algorithms in Quantum Query Complexity written by Robin Kothari and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles and Applications of Quantum Computing Using Essential Math

Download or read book Principles and Applications of Quantum Computing Using Essential Math written by Daniel, A. and published by IGI Global. This book was released on 2023-09-12 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the swiftly evolving realm of technology, the challenge of classical computing's constraints in handling intricate problems has become pronounced. While classical computers excel in many areas, they struggle with complex issues in cryptography, optimization, and molecular simulation. Addressing these escalating challenges requires a disruptive solution to push the boundaries of computation and innovation. Principles and Applications of Quantum Computing Using Essential Math, authored by A. Daniel, M. Arvindhan, Kiranmai Bellam, and N. Krishnaraj. This guide pioneers the transformative potential of quantum computing by seamlessly blending rigorous mathematics with quantum theory. It equips scholars, researchers, and aspiring technologists with insights to grasp and harness quantum computing's capabilities. By delving into quantum gates, algorithms, and error correction techniques, the book demystifies quantum computing, inviting exploration of quantum machine learning, cryptography, and the dynamic interplay between classical and quantum computing. As the quantum landscape expands, this book acts as a vital companion, navigating readers through the converging realms of industry, academia, and innovation. Principles and Applications of Quantum Computing Using Essential Math arrives as a timely answer to the limitations of classical computing, providing scholars with an essential roadmap to navigate the quantum technology landscape. With its clear explanations, practical applications, and forward-looking perspectives, this book serves as an indispensable tool for unraveling quantum computing's mysteries and driving innovation into uncharted domains.

Book Quantum Computing Since Democritus

Download or read book Quantum Computing Since Democritus written by Scott Aaronson and published by Cambridge University Press. This book was released on 2013-03-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

Book Physics Of Quantum Information  The   Proceedings Of The 28th Solvay Conference On Physics

Download or read book Physics Of Quantum Information The Proceedings Of The 28th Solvay Conference On Physics written by David J Gross and published by World Scientific. This book was released on 2023-03-16 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 28th edition held in May 2022 in Brussels and chaired by David Gross and Peter Zoller continued this tradition and addressed some of the most pressing open questions in the fields of quantum information, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: The Physics of Quantum Information, Many-Body Entanglement, Quantum Information and Spacetime, Quantum Platforms, Quantum Algorithms.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain their flavor and are reproduced in full. The reader is taken on a breathtaking ride through a fascinating field which is expanding rapidly.

Book Quantum Proofs

    Book Details:
  • Author : Thomas Vidick
  • Publisher : Foundations and Trends (R) in Theoretical Computer Science
  • Release : 2016-03-30
  • ISBN : 9781680831269
  • Pages : 232 pages

Download or read book Quantum Proofs written by Thomas Vidick and published by Foundations and Trends (R) in Theoretical Computer Science. This book was released on 2016-03-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Proofs provides an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, it discusses non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*. Quantum Proofs is mainly intended for non-specialists having a basic background in complexity theory and quantum information. A typical reader may be a student or researcher in either area desiring to learn about the fundamentals of the (actively developing) theory of quantum interactive proofs.

Book Advances in Cryptology     EUROCRYPT 2022

Download or read book Advances in Cryptology EUROCRYPT 2022 written by Orr Dunkelman and published by Springer Nature. This book was released on 2022-05-28 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 3-volume-set LNCS 13275, 13276 and 13277 constitutes the refereed proceedings of the 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2022, which was held in Trondheim, Norway, during 30 May – 3 June, 2022. The 85 full papers included in these proceedings were accepted from a total of 372 submissions. They were organized in topical sections as follows: Part I: Best Paper Award; Secure Multiparty Computation; Homomorphic Encryption; Obfuscation; Part II: Cryptographic Protocols; Cryptographic Primitives; Real-World Systems Part III: Symmetric-Key Cryptanalysis; Side Channel Attacks and Masking, Post-Quantum Cryptography; Information-Theoretic Security.

Book Automata  Languages and Programming

Download or read book Automata Languages and Programming written by Luca Aceto and published by Springer Science & Business Media. This book was released on 2008-06-24 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICALP 2008, the 35th edition of the International Colloquium on Automata, Languages and Programming, was held in Reykjavik, Iceland, July 7–11, 2008. ICALP is a series of annual conferences of the European Association for Th- reticalComputer Science(EATCS) which ?rsttook placein 1972.This year,the ICALP program consisted of the established Track A (focusing on algorithms, automata,complexityandgames)andTrackB(focusing onlogic,semanticsand theory of programming), and of the recently introduced Track C (focusing on security and cryptography foundations). In response to the call for papers, the Program Committees received 477 submissions, the highest ever: 269 for Track A, 122 for TrackB and 86 for Track C. Out of these, 126 papers were selected for inclusion in the scienti?c program: 70 papers for Track A, 32 for Track B and 24 for Track C. The selection was made by the Program Committees based on originality, quality, and relevance to theoretical computer science. The quality of the manuscripts was very high indeed, and many deserving papers could not be selected. ICALP 2008 consisted of ?ve invited lectures and the contributed papers.

Book Quantum Technology for Economists

Download or read book Quantum Technology for Economists written by Isaiah Hull and published by Springer Nature. This book was released on with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topics in Quantum Algorithms

Download or read book Topics in Quantum Algorithms written by Han-Hsuan Lin and published by . This book was released on 2015 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, I present three results on quantum algorithms and their complexity. The first one is a numerical study on the quantum adiabatic algorithm( QAA) . We tested the performance of the QAA on random instances of MAX 2-SAT on 20 qubits and showed 3 strategics that improved QAA's performance, including a counter intuitive strategy of decreasing the overall evolution time. The second result is a security proof for the quantum money by knots proposed by Farhi et. al. We proved that quantum money by knots can not be cloned in a black box way unless graph isomorphism is efficiently solvable by a quantum computer. Lastly we defined a modified quantum query model, which we called bomb query complexity B(J), inspired by the Elitzur-Vaidman bomb-testing problem. We completely characterized bomb query complexity be showing that B(f) = [Theta](Q(f)2 ). This result implies a new method to find upper bounds on quantum query complexity, which we applied on the maximum bipartite matching problem to get an algorithm with O(n1.75) quantum query complexity, improving from the best known trivial O(n2 ) upper bound.

Book Quantum Computing for Everyone

Download or read book Quantum Computing for Everyone written by Chris Bernhardt and published by MIT Press. This book was released on 2020-09-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Book Quantum Computation and Information

Download or read book Quantum Computation and Information written by Hiroshi Imai and published by Springer Science & Business Media. This book was released on 2008-09-12 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews selected topics charterized by great progress and covers the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.

Book Theory of Cryptography

    Book Details:
  • Author : Kobbi Nissim
  • Publisher : Springer Nature
  • Release : 2021-11-05
  • ISBN : 3030904598
  • Pages : 800 pages

Download or read book Theory of Cryptography written by Kobbi Nissim and published by Springer Nature. This book was released on 2021-11-05 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 13042, LNCS 13043 and LNCS 13044 constitutes the refereed proceedings of the 19th International Conference on Theory of Cryptography, TCC 2021, held in Raleigh, NC, USA, in November 2021. The total of 66 full papers presented in this three-volume set was carefully reviewed and selected from 161 submissions. They cover topics on proof systems, attribute-based and functional encryption, obfuscation, key management and secure communication.

Book Algorithms and Computation

Download or read book Algorithms and Computation written by Seok-Hee Hong and published by Springer. This book was released on 2008-12-11 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 19th International Symposium on Algorithmsand Computation (ISAAC 2008),held on the Gold Coast, Australia, December 15–17, 2008. In the past, it was held in Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Singapore (1997), Daejeon (1998), Chennai (1999), Taipei (2000), Christchurch (2001), Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005), Kolkata (2006), and Sendai (2007). ISAACis anannualinternationalsymposiumthatcoversthe verywide range of topics in the ?eld of algorithms and computation. The main purpose of the symposium is to provide a forum for researchers working in algorithms and theoryofcomputationfrom allovertheworld.In responseto ourcallfor papers, we received 229 submissions from 40 countries. The task of selecting the papers in this volume was done by our Program Committee and many other external reviewers. After an extremely rigorous review process and extensive discussion, the Committee selected 78 papers. We hope all accepted papers will eventually appear in scienti?c journals in a more polished form. Two special issues, one of Algorithmica and one of the International Journal on Computational Geometry and Applications, with selected papers from ISAAC 2008 are in preparation.