EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Simulation of Triangular  Honeycomb and Kagome Crystal Structures using Ultracold Atoms in Lattices of Laser Light

Download or read book Quantum Simulation of Triangular Honeycomb and Kagome Crystal Structures using Ultracold Atoms in Lattices of Laser Light written by Claire K Thomas and published by . This book was released on 2005 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atomic gases trapped at the interference of coherent beams of light constitute an artificial material. This optical lattice material may be used for controlled quantum simulations of condensed matter theories. The bulk of this dissertation concerns the construction and calibration of an optical superlattice that can form the triangular, honeycomb and kagome crystal structures. The properties and geometry of this artificial material may be dynamically changed, allowing for the experiments discussed in this thesis that would be impossible with real materials. The use of ultracold atoms in optical lattices for quantitative tests is challenging because of the novelty of many of the techniques in the field, and because of the myriad experimental differences between these artificial materials and true materials. This thesis reports the development of a method to characterize optical lattice potentials using matter-wave diffraction. We observe an enhancement of inversion asymmetry in matter-wave diffraction from a honeycomb lattice, which we explain using a time-independent perturbative treatment of the single-particle band structure of the lattice. Our experiment also provides new insight into a commonly used detection technique. This thesis culminates in the development and experimental realization of a quantitative test of a condensed-matter theory. The test is insensitive to the experimental differences between artificial materials and real materials. We focus on a prediction from a mean-field treatment of the Bose-Hubbard model that concerns the difference in behavior of itinerant particles on lattices that are identical but for their geometry. Using the tunable geometry of our quantum simulator, we measure the properties of ultracold atomic gases trapped in the triangular and kagome lattices under otherwise identical conditions and find that they are consistent with the mean-field scaling prediction.

Book Creating Novel Quantum States of Ultracold Bosons in Optical Lattices

Download or read book Creating Novel Quantum States of Ultracold Bosons in Optical Lattices written by Colin Joseph Kennedy and published by . This book was released on 2017 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atoms in optical lattices are among the most developed platforms of interest for building quantum devices suitable for quantum simulation and quantum computation. Ultracold trapped atoms are advantageous because they are fundamentally indistinguishable qubits that can be prepared with high fidelity in well-defined states and read-out with similarly high fidelities. However, an outstanding challenge for ultracold atoms in optical lattices is to engineer interesting interactions and control the effects of heating that couple the system to states that lie outside the Hilbert space we wish to engineer. In this thesis, I describe a series of experiments and theoretical proposals that address several critical issues facing ultracold atoms in optical lattices. First, I describe experiments where the tunneling behavior of atoms in the lattice is modified to make our fundamentally neutral particles behave as though they are charged particles in a magnetic field. We show how engineering this interaction creates intrinsic degeneracy in the single particle spectrum of the many-body system and how to introduce strong interactions in the system with the goal of producing exotic many-body states such as a bosonic fractional quantum Hall states. Then, I discuss how this technique can be easily generalized to include spin and higher spatial dimensions in order to access a rich variety of new physics phenomena. Next, I report on the realization of a spin-1 Heisenberg Hamiltonian which emerges as the low energy effective theory describing spin ordering in the doubly-occupied Mott insulator of two spin components. This integer spin Heisenberg model is qualitatively different from the half-integer spin model because it contains a gapped, spin-insulating ground state for small inter-spin interaction energies which we call the spin Mott. Using a spin-dependent lattice to control the inter-spin interactions, we demonstrate high-fidelity, reversible loading of the spin-Mott phase and develop a probe of local spin correlations in order to demonstrate a spin entropy below 0.2 kB per spin. Progress on adiabatically driving the quantum phase transition from the spin Mott to the xy-ferromagnetic is discussed along with the progress towards the creation of a quantum gas microscope for single atom detection and manipulation..

Book Quantum Simulation with an Optical Kagome Lattice

Download or read book Quantum Simulation with an Optical Kagome Lattice written by Max Melchner Von Dydiowa and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hubbard Model  The  Recent Results

Download or read book Hubbard Model The Recent Results written by Mario G Rasetti and published by World Scientific. This book was released on 1991-07-03 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles provides authoritative and up-to-date reviews on the Hubbard Model. It will be useful to graduate students and researchers in the field.

Book Ultracold Atoms in Optical Lattices

Download or read book Ultracold Atoms in Optical Lattices written by Maciej Lewenstein and published by Oxford University Press. This book was released on 2012-03-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.

Book Hybrid Quantum Systems

    Book Details:
  • Author : Yoshiro Hirayama
  • Publisher : Springer Nature
  • Release : 2022-01-06
  • ISBN : 9811666792
  • Pages : 352 pages

Download or read book Hybrid Quantum Systems written by Yoshiro Hirayama and published by Springer Nature. This book was released on 2022-01-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art research on quantum hybridization, manipulation, and measurement in the context of hybrid quantum systems. It covers a broad range of experimental and theoretical topics relevant to quantum hybridization, manipulation, and measurement technologies, including a magnetic field sensor based on spin qubits in diamond NV centers, coherently coupled superconductor qubits, novel coherent couplings between electron and nuclear spin, photons and phonons, and coherent coupling of atoms and photons. Each topic is concisely described by an expert at the forefront of the field, helping readers quickly catch up on the latest advances in fundamental sciences and technologies of hybrid quantum systems, while also providing an essential overview.

Book Introduction to Frustrated Magnetism

Download or read book Introduction to Frustrated Magnetism written by Claudine Lacroix and published by Springer Science & Business Media. This book was released on 2011-01-12 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.

Book Microcavities

    Book Details:
  • Author : Alexey Kavokin
  • Publisher : OUP Oxford
  • Release : 2011-04-27
  • ISBN : 0191620734
  • Pages : 487 pages

Download or read book Microcavities written by Alexey Kavokin and published by OUP Oxford. This book was released on 2011-04-27 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.

Book Strong Light matter Coupling

Download or read book Strong Light matter Coupling written by Leong Chuan Kwek and published by World Scientific. This book was released on 2013-12-23 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.

Book The Physics of Graphene

    Book Details:
  • Author : Mikhail I. Katsnelson
  • Publisher : Cambridge University Press
  • Release : 2020-03-19
  • ISBN : 1108597475
  • Pages : 441 pages

Download or read book The Physics of Graphene written by Mikhail I. Katsnelson and published by Cambridge University Press. This book was released on 2020-03-19 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading graphene research theorist Mikhail I. Katsnelson systematically presents the basic concepts of graphene physics in this fully revised second edition. The author illustrates and explains basic concepts such as Berry phase, scaling, Zitterbewegung, Kubo, Landauer and Mori formalisms in quantum kinetics, chirality, plasmons, commensurate-incommensurate transitions and many others. Open issues and unsolved problems introduce the reader to the latest developments in the field. New achievements and topics presented include the basic concepts of Van der Waals heterostructures, many-body physics of graphene, electronic optics of Dirac electrons, hydrodynamics of electron liquid and the mechanical properties of one atom-thick membranes. Building on an undergraduate-level knowledge of quantum and statistical physics and solid-state theory, this is an important graduate textbook for students in nanoscience, nanotechnology and condensed matter. For physicists and material scientists working in related areas, this is an excellent introduction to the fast-growing field of graphene science.

Book Quantum Theory of Condensed Matter

Download or read book Quantum Theory of Condensed Matter written by Bertrand I. Halperin and published by World Scientific. This book was released on 2010 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since 1911, the Solvay Conferences have shaped modern physics. The 24th edition chaired by Bertrand Halperin did not break the tradition. Held in October 2008, it gathered in Brussels most of the leading figures working on the ?quantum theory of condensed matter?, addressing some of the most profound open problems in the field. The proceedings contain the ?rapporteur talks? giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions treating: mesoscopic and disordered systems; exotic phases and quantum phase transitions in model systems; experimentally realized correlated-electron materials; quantum Hall systems, and one-dimensional systems; systems of ultra-cold atoms, and advanced computational methods. In the Solvay tradition, the proceedings include also the prepared comments to the rapporteur talks. The discussions among the participants ? some of which are quite lively and involving dramatically divergent points of view ? have been carefully edited and reproduced in full.

Book Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems

Download or read book Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems written by Roland Winkler and published by Springer Science & Business Media. This book was released on 2003-10-10 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.

Book Basics of Optics of Multilayer Systems

Download or read book Basics of Optics of Multilayer Systems written by Sh. A. Furman and published by Atlantica Séguier Frontières. This book was released on 1992 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Simulations with Photons and Polaritons

Download or read book Quantum Simulations with Photons and Polaritons written by Dimitris G. Angelakis and published by Springer. This book was released on 2017-05-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.

Book Quantum Gases

    Book Details:
  • Author : Nick Proukakis
  • Publisher : World Scientific
  • Release : 2013
  • ISBN : 1848168128
  • Pages : 579 pages

Download or read book Quantum Gases written by Nick Proukakis and published by World Scientific. This book was released on 2013 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.

Book The Theory of the Quantum World

Download or read book The Theory of the Quantum World written by David Gross and published by World Scientific. This book was released on 2013 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since 1911, the Solvay Conferences have shaped modern physics. The 25th edition held in October 2011 in Brussels and chaired by David Gross continued this tradition and celebrated the first centennial of this illustrious series of conferences. The development and applications of quantum mechanics have always been the main threads in the history of the Solvay Conferences, hence the 25th Solvay conference gathered many of the leading figures working on a wide variety of profound problems in physics where quantum mechanical effects play a central role. The conference addressed some of the most pressing open questions in the field of physics.The proceedings contain the OC rapporteur talksOCO which give a broad overview with unique insights by distinguished and renowned scientists. These lectures cover the seven sessions: OC History and ReflectionsOCO, OC Foundations of Quantum Mechanics and Quantum ComputationOCO, OC Control of Quantum SystemsOCO, OC Quantum Condensed MatterOCO, OC Particles and FieldsOCO, OC Quantum Gravity and String TheoryOCO and it ended with a general discussion attempting to arrive at a synthesis.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants OCo some of which quite lively and involving dramatically divergent points of view OCo have been carefully edited and are reproduced in full.

Book Nonlinear Time Series Analysis

Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.