EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Potential  Physics  Geometry and Algebra

Download or read book Quantum Potential Physics Geometry and Algebra written by Ignazio Licata and published by Springer Science & Business Media. This book was released on 2013-11-19 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently the interest in Bohm realist interpretation of quantum mechanics has grown. The important advantage of this approach lies in the possibility to introduce non-locality ab initio, and not as an “unexpected host”. In this book the authors give a detailed analysis of quantum potential, the non-locality term and its role in quantum cosmology and information. The different approaches to the quantum potential are analysed, starting from the original attempt to introduce a realism of particles trajectories (influenced by de Broglie’s pilot wave) to the recent dynamic interpretation provided by Goldstein, Durr, Tumulka and Zanghì, and the geometrodynamic picture, with suggestion about quantum gravity. Finally we focus on the algebraic reading of Hiley and Birkbeck school, that analyse the meaning of the non-local structure of the world, bringing important consequences for the space, time and information concepts.

Book Geometry Of Quantum Potential  The  Entropic Information Of The Vacuum

Download or read book Geometry Of Quantum Potential The Entropic Information Of The Vacuum written by Davide Fiscaletti and published by World Scientific. This book was released on 2018-03-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: In virtue of its features, Bohm's quantum potential introduces interesting and relevant perspectives towards a satisfactory geometrodynamic description of quantum processes. This book makes a comprehensive state-of-the-art review of some of the most significant elements and results about the geometrodynamic picture determined by the quantum potential in various contexts. Above all, the book explores the perspectives about the fundamental arena subtended by the quantum potential, the link between the geometry associated to the quantum potential and a fundamental quantum vacuum. After an analysis of the geometry subtended by the quantum potential in the different fields of quantum physics (the non-relativistic domain, the relativistic domain, the relativistic quantum field theory, the quantum gravity domain and the canonical quantum cosmology), in the second part of the book, a recent interpretation of Bohm's quantum potential in terms of a more fundamental entity called quantum entropy, the approach of the symmetryzed quantum potential and the link between quantum potential and quantum vacuum are analysed, also in the light of the results obtained by the author.

Book The War of the Ghosts and Machines

Download or read book The War of the Ghosts and Machines written by Mike Hockney and published by Magus Books. This book was released on with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you a ghost or a machine? You don't need to be a superstitious believer to support the side of the ghosts. Machine people reduce everything to lifeless, mindless, purposeless atoms of matter: the ultimate little machines. For "ghost" people, reality reduces to dimensionless, mathematical singularities, which are none other than the hyperrational monadic souls posited by Pythagoras and Leibniz. Ghost people subscribe to atoms (minds) with atomic number zero, i.e. minds/souls are made of massless, dimensionless photons. Machine people start with hydrogen atoms, with atomic number one. All "ghost" entities are associated with zero and infinity. All machine people deny the existence of zero and infinity. Mathematically, these are the two numbers where the ghosts and the machines collide head on. This book is all about demonstrating that there are indeed ghosts in the machines.

Book Timeless Approach  The  Frontier Perspectives In 21st Century Physics

Download or read book Timeless Approach The Frontier Perspectives In 21st Century Physics written by Davide Fiscaletti and published by World Scientific. This book was released on 2015-09-08 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book provides a broad and comprehensive introduction to the fascinating and beautiful subject of timeless approaches in physics, focusing the attention in particular on significant models developed recently by the author. It presents relevant and novel perspectives in 21st century theoretical physics as regards the arena of physical processes and its geometry (both in special relativity, quantum mechanics, the quantum gravity domain and about the quantum vacuum). The timeless approach may be used as a source of reference by researchers in theoretical physics and at the same time it is also suitable for graduate students in physics who wish to have an extend view of some of the classic and fundamental models in the subject.

Book Chaos  Fractals and Complexity

Download or read book Chaos Fractals and Complexity written by Tassos Bountis and published by Springer Nature. This book was released on 2023-10-23 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of proceedings contains research results within the framework of the fields of Chaos, Fractals and Complexity, written by experienced professors, young researchers, and applied scientists. It includes reviews of the fields, which are presented in an educational way for the widest possible audience, analytical results, computer simulations and experimental evidence, focusing on mathematical modelling. The papers presented here are selected from lectures given at the 28th Summer School “Dynamical Systems and Complexity”, July 18 – 27, 2022. Topics cover applications of complex systems in Neuroscience, Biology, Photonics, Seismology, Meteorology, and more broadly Physical and Engineering systems. The summer school has a long history, which began at the University of Patras in 1987 and continues with great success to this day. The original main purpose was to introduce young students and researchers of Greece to a new science that emerged several decades ago and continues to grow internationally at an ever increasing rate around the world.

Book Quantum Structural Studies  Classical Emergence From The Quantum Level

Download or read book Quantum Structural Studies Classical Emergence From The Quantum Level written by Ruth E Kastner and published by World Scientific. This book was released on 2016-11-10 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structural aspects of composite quantum systems in the foundation, interpretation and application of quantum theory is an increasingly prominent topic of physics research. As an emerging field, it seeks to understand the origins of the classical world of experience from the quantum level.Quantum Structural Studies presents conceptual fundamentals and mathematical methods for investigating the structuring of quantum systems into subsystems. Split into four sections, the topics covered include the historical and philosophical aspects of quantum structures, specific interpretive approaches and ontologies, and alternative methodological approaches to quantum mechanics. Questions addressed are: Specialists, graduate students and researchers seeking an introduction to the field of emergent structures and new directions for research and experimentation can use this book to find up-to-date representative texts and reviews.

Book Quantum Mechanics for Mathematicians

Download or read book Quantum Mechanics for Mathematicians written by Leon Armenovich Takhtadzhi͡an and published by American Mathematical Soc.. This book was released on 2008 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Book The Theoretical Minimum

Download or read book The Theoretical Minimum written by Leonard Susskind and published by Basic Books. This book was released on 2014-04-22 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Book Clifford  Geometric  Algebras

    Book Details:
  • Author : William E. Baylis
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461241049
  • Pages : 522 pages

Download or read book Clifford Geometric Algebras written by William E. Baylis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Book General System Theory  Perspectives in Philosophy and Approaches in Complex Systems

Download or read book General System Theory Perspectives in Philosophy and Approaches in Complex Systems written by Gianfranco Minati and published by MDPI. This book was released on 2018-07-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems" that was published in Systems

Book Noncommutative Geometry  Quantum Fields and Motives

Download or read book Noncommutative Geometry Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Book Physics for Mathematicians

Download or read book Physics for Mathematicians written by Michael Spivak and published by . This book was released on 2010 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometric Multiplication of Vectors

Download or read book Geometric Multiplication of Vectors written by Miroslav Josipović and published by Springer Nature. This book was released on 2019-11-22 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.

Book Clifford  geometric  Algebras with Applications to Physics  Mathematics  and Engineering

Download or read book Clifford geometric Algebras with Applications to Physics Mathematics and Engineering written by William Eric Baylis and published by Boston : Birkhäuser. This book was released on 1996 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a comprehensive approach to the theoretical, applied and symbolic computational aspects of the subject. Excellent for self-study, leading experts in the field have written on the of topics mentioned above, using an easy approach with efficient geometric language for non-specialists.

Book The Physics of Quantum Mechanics

Download or read book The Physics of Quantum Mechanics written by James Binney and published by Oxford University Press, USA. This book was released on 2013-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.

Book Geometric Algebra for Physicists

Download or read book Geometric Algebra for Physicists written by Chris Doran and published by Cambridge University Press. This book was released on 2007-11-22 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.

Book Exploring physics with Geometric Algebra

Download or read book Exploring physics with Geometric Algebra written by Peeter Joot and published by Peeter Joot. This book was released on with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exploratory collection of notes containing worked examples of a number of applications of Geometric Algebra (GA), also known as Clifford Algebra. This writing is focused on undergraduate level physics concepts, with a target audience of somebody with an undergraduate engineering background (i.e. me at the time of writing.) These notes are more journal than book. You'll find lots of duplication, since I reworked some topics from scratch a number of times. In many places I was attempting to learn both the basic physics concepts as well as playing with how to express many of those concepts using GA formalisms. The page count proves that I did a very poor job of weeding out all the duplication. These notes are (dis)organized into the following chapters * Basics and Geometry. This chapter covers a hodge-podge collection of topics, including GA forms for traditional vector identities, Quaterions, Cauchy equations, Legendre polynomials, wedge product representation of a plane, bivector and trivector geometry, torque and more. A couple attempts at producing an introduction to GA concepts are included (none of which I was ever happy with.) * Projection. Here the concept of reciprocal frame vectors, using GA and traditional matrix formalisms is developed. Projection, rejection and Moore-Penrose (generalized inverse) operations are discussed. * Rotation. GA Rotors, Euler angles, spherical coordinates, blade exponentials, rotation generators, and infinitesimal rotations are all examined from a GA point of view. * Calculus. Here GA equivalents for a number of vector calculus relations are developed, spherical and hyperspherical volume parameterizations are derived, some questions about the structure of divergence and curl are examined, and tangent planes and normals in 3 and 4 dimensions are examined. Wrapping up this chapter is a complete GA formulation of the general Stokes theorem for curvilinear coordinates in Euclidean or non-Euclidean spaces is developed. * General Physics. This chapter introduces a bivector form of angular momentum (instead of a cross product), examines the components of radial velocity and acceleration, kinetic energy, symplectic structure, Newton's method, and a center of mass problem for a toroidal segment. * Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz transformation by requiring wave equation invariance, Lorentz transformation of the four-vector (STA) gradient, and a look at the relativistic doppler equation. * Electrodynamics. The GA formulation of Maxwell's equation (singular in GA) is developed here. Various basic topics of electrodynamics are examined using the GA toolbox, including the Biot-Savart law, the covariant form for Maxwell's equation (Space Time Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some Lienard-Wiechert problems. * Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the usual vectorial representation is explored. This includes some application of boosts to the force equation to examine how it transforms under observe dependent conditions. * Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy and momentum density and the GA representation of the Poynting vector and the stress-energy tensors. * Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how various matrix operations map onto their GA equivalents. A bivector form for the angular momentum operator is examined. A multivector form for the first few spherical harmonic eigenfunctions is developed. A multivector factorization of the three and four dimensional Laplacian and the angular momentum operators are derived. * Fourier treatments. Solutions to various PDE equations are attempted using Fourier series and transforms. Much of this chapter was exploring Fourier solutions to the GA form of Maxwell's equation, but a few other non-geometric algebra Fourier problems were also tackled.