EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Dot Sensitized ZnO Nanowire P3HT Hybrid Photovoltaics

Download or read book Quantum Dot Sensitized ZnO Nanowire P3HT Hybrid Photovoltaics written by Nicholas Andrew Harris and published by . This book was released on 2012 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hybrid, nanostructured solar cell architecture has been designed, described, fabricated and characterized. ZnO nanowires were synthesized using thermal chemical vapor deposition to act as a high energy photon absorber scaffold and electron transport pathway. InP-ZnS core-shell quantum dots were attached to the nanowires via surface chemistry to act as a high-efficiency sensitizing absorption medium. A ligand exchange procedure was performed to cap the quantum dots with mercaptopropionic acid for improved adhesion to ZnO nanowires and improved electrical properties. Experimentation was performed to optimize the surface chemistry adhesion of the ligand exchange and quantum dot-nanowire adhesion. A thoroughly-filled P3HT matrix was drop coated selectively and annealed into the quantum dot sensitized nanowire array to serve as a hole capture and transport, absorption, and planarizing medium. Characterization was performed throughout device fabrication using SEM, TEM, XRD, PL spectroscopy, Raman spectroscopy, UV-Vis spectroscopy, and electrical measurements. A dense monolayer of quantum dots was deposited and imaged via HRTEM. PL quenching of quantum dots in P3HT was observed. The viability and advantages of quantum dot sensitization of a hybrid ZnO nanowire-P3HT hybrid were shown via PL, UV-Vis and device electrical measurements.

Book Semiconductor Nanocrystals and Metal Nanoparticles

Download or read book Semiconductor Nanocrystals and Metal Nanoparticles written by Tupei Chen and published by CRC Press. This book was released on 2016-10-14 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.

Book ZnO Nanowires for Dye Sensitized Solar Cells

Download or read book ZnO Nanowires for Dye Sensitized Solar Cells written by Simas Rackauskas and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter provides a broad review of the latest research activities focused on the synthesis and application of ZnO nanowires (NWs) for dye-sensitized solar cells (DSCs) and composed of three main sections. The first section briefly introduces DSC-working principles and ZnO NW application advantages and stability issues. The next section reviews ZnO NW synthesis methods, demonstrating approaches for controlled synthesis of different ZnO NW morphology and discussing how this effects the overall efficiency of the DSC. In the last section, the methods for ZnO NW interface modification with various materials are discussed, which include ZnO core-shell structures with semiconductive or protective layers, ZnO NW hybrid structures with other materials, such as nanoparticles, quantum dots and carbon nanomaterials and their benefit for charge and light transport in DSCs. The review is concluded with some perspectives and outlook on the future developments in the ZnO nanowire application for DSCs.

Book Nanowire Energy Storage Devices

Download or read book Nanowire Energy Storage Devices written by Liqiang Mai and published by John Wiley & Sons. This book was released on 2024-02-12 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanowire Energy Storage Devices Comprehensive resource providing in-depth knowledge about nanowire-based energy storage technologies Nanowire Energy Storage Devices focuses on the energy storage applications of nanowires, covering the synthesis and principles of nanowire electrode materials and their characterization, and performance control. Major parts of the book are devoted to the applications of nanowire-based ion batteries, high energy batteries, supercapacitors, micro-nano energy storage devices, and flexible energy storage devices. The book also addresses global energy challenges by explaining how nanowires allow for the design and fabrication of devices that provide sustainable energy generation. With contributions from the founders of the field of nanowire technology, Nanowire Energy Storage Devices covers topics such as: Physical and chemical properties, thermodynamics, and kinetics of nanowires, and basic performance parameters of nanowire-based electrochemical energy storage devices Conventional, porous, hierarchical, heterogeneous, and hollow nanomaterials, and in-situ electron microscopic and spectroscopy characterization Electrochemistry, advantages, and issues of lithium-ion batteries, unique characteristic of nanowires for lithium-ion batteries, and nanowires as anodes in lithium-ion batteries Nanowires for other energy storage devices, including metal-air, polyvalent ion, alkaline, and sodium/lithium-sulfur batteries Elucidating the design, synthesis, and energy storage applications, Nanowire Energy Storage Devices is an essential resource for materials scientists, electrochemists, electrical engineers, and solid state physicists.

Book Hybrid Nanomaterials

Download or read book Hybrid Nanomaterials written by Suneel Kumar Srivastava and published by John Wiley & Sons. This book was released on 2017-06-15 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book highlights applications of hybrid materials in solar energy systems, lithium ion batteries, electromagnetic shielding, sensing of pollutants and water purification. A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers. This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects: 3D hybrid nanomaterials nanofillers Hybrid nanostructured materials for development of advanced lithium batteries High performing hybrid nanomaterials for supercapacitor applications Nano-hybrid materials in the development of solar energy applications Application of hybrid nanomaterials in water purification Advanced nanostructured materials in electromagnetic shielding of radiations Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants Development of hybrid fillers/polymer nanocomposites for electronic applications High performance hybrid filler reinforced epoxy nanocomposites State-of-the-art overview of elastomer/hybrid filler nanocomposites

Book Zinc Oxide Nano structures for Photovoltaic Applications

Download or read book Zinc Oxide Nano structures for Photovoltaic Applications written by Basma El Zein and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: To date, the development of nanotechnology has launched new ways to design efficient solar cells. Strategies have been employed to develop nano structures architecture of semiconductors, metals and polymers for solar cells. Motivated by the objective of developing an eco-green and high efficient solar cell; Nanowire based quantum dots sensitized solar cells is presented in the book. The design of the solar cell, the nano structures and the material selections have been also illustrated. Zinc Oxide (ZnO) Nanowires (NWs) were selected as n-type semiconductors to trap the light and capture the photo-generated charges to transport them quickly to the electrodes. Furthermore, Lead Sulfide (PbS)quantum dots (QDs) decorating the synthesized NWs, will absorb more light due to the tunability of the QDs size and increase the electron -hole pairs generation to achieve higher efficiency. The different ZnO NWs growth techniques by vapor deposition specifically by pulsed laser deposition are presented in this book in addition to the in-situ and ex-situ growth techniques of the PbS QDs. A demo of the Solar cell prototype, and recommendations on improving its efficiency is also revealed.

Book Nanowires

    Book Details:
  • Author : Abbass A. Hashim
  • Publisher : BoD – Books on Demand
  • Release : 2011-07-18
  • ISBN : 9533073187
  • Pages : 554 pages

Download or read book Nanowires written by Abbass A. Hashim and published by BoD – Books on Demand. This book was released on 2011-07-18 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This potentially unique work offers various approaches on the implementation of nanowires. As it is widely known, nanotechnology presents the control of matter at the nanoscale and nanodimensions within few nanometers, whereas this exclusive phenomenon enables us to determine novel applications. This book presents an overview of recent and current nanowire application and implementation research worldwide. We examine methods of nanowire synthesis, types of materials used, and applications associated with nanowire research. Wide surveys of global activities in nanowire research are presented, as well.

Book Next generation Photovoltaics Using Solution grown Zinc Oxide Nanowire Arrays

Download or read book Next generation Photovoltaics Using Solution grown Zinc Oxide Nanowire Arrays written by Lori Elizabeth Greene and published by . This book was released on 2007 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanowires

    Book Details:
  • Author : Khan Maaz
  • Publisher : BoD – Books on Demand
  • Release : 2017-07-05
  • ISBN : 9535132830
  • Pages : 266 pages

Download or read book Nanowires written by Khan Maaz and published by BoD – Books on Demand. This book was released on 2017-07-05 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional nanostructures, such as nanowires, have drawn extensive research interests in the recent years. The smaller size brings unique properties to the nanowires due to the finite size effect (quantum confinement effects). The unique geometrical features of the nanowires bring their utilization in many practical applications in the recent advanced technology. This book provides an updated review on fabrication, properties, and applications of various nanowires. This book is aimed to provide solid foundation of nanowires to the students, scientists, and engineers working in the field of material science and condensed matter physics.

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Tianyou Zhai and published by John Wiley & Sons. This book was released on 2012-10-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.

Book ZnO Nanocarbon Core Shell Type Hybrid Quantum Dots

Download or read book ZnO Nanocarbon Core Shell Type Hybrid Quantum Dots written by Won Kook Choi and published by Springer. This book was released on 2016-08-20 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive overview of ZnO-nano carbon core shell hybrid issues. There is significant interest in metal oxide/nanocarbon hybrid functional materials in the field of energy conversion and storage as electrode materials for supercapacitors, Li ion secondary battery, electrocatalysts for water splitting, and optoelectronic devices such as light emitting diodes and solar photovoltaic cells. Despite efforts to manipulate more uniform metal oxide-nanocarbon nanocomposite structures, they have shown poor performance because they are randomly scattered and non-uniformly attached to the nanocarbon surface. For higher and more effective performance of the hybrid structure, 3D conformal coating on metal oxides are highly desirable. In the first part of the book, the physical and chemical properties of ZnO and nanocarbons and the state-of-the-art in related research are briefly summarized. In the next part, the 3D conformal coating synthetic processes of ZnO templated nanocarbon hybrid materials such as ZnO-graphene,-C60, single-walled (SWCNT) are introduced with the aid of schematic illustrations. Analysis of their chemical bonding and structure are also presented. In the final section, several applications are presented: UV photovoltaic cells and photoelectrochemical anodes for water splitting using ZnO-C60 and ZnO-graphene, white-light-emitting diodes based on ZnO-graphene quantum dots(GQDs), inverted solar cells using ligand-modified ZnO-graphene QDs, and P(VDF-TrFE) copolymer with mixed with nano-ring SWCNT. The book describes how strong anchoring bonds between a ZnO core and carbon nanomaterial shell will ultimately prevail over the main drawbacks of ZnO with high charge recombination and poor electrochemical stability in liquid solutions. Due to the moderate energy states and excellent electric properties of the nanocarbons, ultrafast charge carrier transport from the ZnO core to the nanocarbon shell is guaranteed with the use of the photoluminescence (PL) lifetime measurement. Given the growing interest and significance of future research in optoelectronic and electrochemical devices applications, the contents are very timely. This book is targeted towards researchers looking for highly efficient metal oxide-nanocarbon hybrid functional materials in the fields of nano-optoelectronics, photoelectrochemistry, energy storage and conversion.

Book Flexible 3 Dimensional Hybrid ZnO Nanowire a Si H Thin Film Solar Cells

Download or read book Flexible 3 Dimensional Hybrid ZnO Nanowire a Si H Thin Film Solar Cells written by Minoli Pathirane and published by . This book was released on 2016 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: ZnO nanowires were conformally coated with hydrogenated amorphous Si (a-Si:H) p-i-n thin-film to form three-dimensional (3-D) radial-junction (RJ) nanowire solar cell arrays (NWSCs). These NWSCs are a promising architecture for photovoltaic devices due to their enhanced light absorption and carrier extraction capabilities. However, conformally coating thin-films and the top electrode over ZnO nanowires become difficult with decreased periods by using conventional methods. In this thesis, conformal coatings were achieved by increasing the average spacing between NWSCs while effectively moving the NWSCs physically towards each other via substrate-bending to change the spacing between the NWSCs.

Book Inorganic Nanowires

Download or read book Inorganic Nanowires written by M. Meyyappan and published by CRC Press. This book was released on 2009-12-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in nanofabrication, characterization tools, and the drive to commercialize nanotechnology products have contributed to the significant increase in research on inorganic nanowires (INWs). Yet few if any books provide the necessary comprehensive and coherent account of this important evolution. Presenting essential information on both popular and emerging varieties, Inorganic Nanowires: Applications, Properties, and Characterization addresses the growth, characterization, and properties of nanowires. Author Meyyappan is the director and senior scientist at Ames Center for Nanotechnology and a renowned leader in nanoscience and technology, and Sunkara is also a major contributor to nanowire literature. Their cutting-edge work is the basis for much of the current understanding in the area of nanowires, and this book offers an in-depth overview of various types of nanowires, including semiconducting, metallic, and oxide varieties. It also includes extensive coverage of applications that use INWs and those with great potential in electronics, optoelectronics, field emission, thermoelectric devices, and sensors. This invaluable reference: Traces the evolution of nanotechnology and classifies nanomaterials Describes nanowires and their potential applications to illustrate connectivity and continuity Discusses growth techniques, at both laboratory and commercial scales Evaluates the most important aspects of classical thermodynamics associated with the nucleation and growth of nanowires Details the development of silicon, germanium, gallium arsenide, and other materials in the form of nanowires used in electronics applications Explores the physical, electronic and other properties of nanowires The explosion of nanotechnology research activities for various applications is due in large part to the advances in the growth of nanowires. Continued development of novel nanostructured materials is essential to the success of so many economic sectors, ranging from computing and communications to transportation and medicine. This volume discusses how and why nanowires are ideal candidates to replace bulk and thin film materials. It covers the principles behind device operation and then adds a detailed assessment of nanowire fabrication, performance results, and future prospects and challenges, making this book a valuable resource for scientists and engineers in just about any field. Co-author Meyya Meyyappan will receive the Pioneer Award in Nanotechnology from the IEEE Nanotechnology Council at the IEEE Nano Conference in Portland, Oregon in August, 2011

Book Nanomaterials for Sustainable Energy and Environmental Remediation

Download or read book Nanomaterials for Sustainable Energy and Environmental Remediation written by Mu. Naushad and published by Elsevier. This book was released on 2020-03-14 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science - Summarizes the latest advances in how nanotechnology is being used in energy and environmental science - Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors - Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications

Book Colloidal Quantum Dot Optoelectronics and Photovoltaics

Download or read book Colloidal Quantum Dot Optoelectronics and Photovoltaics written by Gerasimos Konstantatos and published by Cambridge University Press. This book was released on 2013-11-07 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Book Advanced Polymeric Systems

Download or read book Advanced Polymeric Systems written by Didier Rouxel and published by CRC Press. This book was released on 2022-09-01 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over recent years a considerable amount of effort has been devoted, both in industry and academia, towards the incorporation of various macro, micro and nano sized fillers into polymers. There is also much interest in the evaluation of various polymer properties with respect to a wide set of applications. The advances in nanotechnology together with the development in material sciences has improved the shortcomings of these materials over the decade. This book covers the latest advances in the field of polymer nanocomposites and polymer composites for varied applications. The major topics discussed in the book include: • Nanostructured materials for energy applications • Nanostructured polymercomposites • Bio-polymers • Nanostructured polymers for biomedical applicationsThe book contains extended and updated research papers that were initially selected for the ICAMP-2017 conference which focused on advances in polymer materials.The book is ideal for researchers and practitioners in polymer science and materials science as well as for graduate students in polymer chemistry, materials science, nanotechnology and biomedical engineering.

Book Development of Zinc Oxide Nanowires and Quantum Dot Incorporation for Photovoltaic Applications

Download or read book Development of Zinc Oxide Nanowires and Quantum Dot Incorporation for Photovoltaic Applications written by Bita Janfeshan and published by . This book was released on 2015 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterojunctions of metal oxide semiconductors with quantum dots (QD) have been deployed in a number of advanced electronic devices. Improvement in the devices' performance requires in-depth studies on charge carrier transfer dynamics. In this work, charge carrier dynamics, at the interface on zinc oxide nanowires (ZnO NW) with cadmium selenide QDs, were investigated. ZnO NWs were synthesized and characterized through the chemical vapor deposition (CVD) and hydrothermal methods. Both methods yielded highly crystalline ZnO structures. The hydrothermally grown NWs were doped with aluminum (Al) and the spectroscopy analyses showed that Al was successfully incorporated into the ZnO crystalline structure. Colloidal cadmium selenide/zinc sulfide (CdSe/ZnS) core/shell QDs were incorporated into synthesized ZnO NW arrays. The interaction and wettability of two different QD ligands (Octadecylamine and oleic acid) on the self-assembly of QDs in the NW spacing were investigated using electron microscopy. Afterwards, the charge carrier transfer dynamics at the heterojunction of NW/QD were studied employing time resolved photoluminescence spectroscopy (TRPL). A hypothesis on charge transfer kinetics, based on the experimental measurements, was provided. It was realized that photocharging of QDs is the main reason for substantial PL quench, when holes are not effectively removed from the photoexcited QDs by a hole-transporting medium. Furthermore, the TRPL measurements showed that the hole transfer rate by a polysulfide electrolyte is slower than that of an electron; one main reason in impeding the device performance in quantum dot-sensitized solar cells (QDSSC). The NW/QD heterojunction was deployed in the structure of a QDSSC. The current-voltage behavior of the cells under various conditions was characterized in both dark and light conditions. The underlying problems hindering the device performance were identified by these characterizations. Heterojunction of ZnO NWs with a GaN thin film was also deployed in the structure of an LED. The NWs were grown on GaN film using the hydrothermal method. The fabricated device exhibited light emission under both forward and reverse bias injection currents. The electroluminescence and PL characterizations revealed that the light emission from the fabricated device depends on the point defects and interface states of the two semiconductors.