Download or read book Uncertainty Quantification and Predictive Computational Science written by Ryan G. McClarren and published by Springer. This book was released on 2018-11-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.
Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by Robert Barthorpe and published by Springer. This book was released on 2017-06-07 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty
Download or read book Handbook of Probabilistic Models written by Pijush Samui and published by Butterworth-Heinemann. This book was released on 2019-10-05 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Download or read book Uncertainty in Engineering written by Louis J. M. Aslett and published by Springer Nature. This book was released on 2022 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by H. Sezer Atamturktur and published by Springer. This book was released on 2015-04-25 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3. Proceedings of the 33rd IMAC, A Conference and Exposition on Balancing Simulation and Testing, 2015, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Uncertainty Quantification & Model Validation Uncertainty Propagation in Structural Dynamics Bayesian & Markov Chain Monte Carlo Methods Practical Applications of MVUQ Advances in MVUQ & Model Updating
Download or read book Uncertainty Quantification in Laminated Composites written by Sudip Dey and published by CRC Press. This book was released on 2018-09-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.
Download or read book Understanding Risks and Uncertainties in Energy and Climate Policy written by Haris Doukas and published by Springer. This book was released on 2018-12-10 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book analyzes and seeks to consolidate the use of robust quantitative tools and qualitative methods for the design and assessment of energy and climate policies. In particular, it examines energy and climate policy performance and associated risks, as well as public acceptance and portfolio analysis in climate policy, and presents methods for evaluating the costs and benefits of flexible policy implementation as well as new framings for business and market actors. In turn, it discusses the development of alternative policy pathways and the identification of optimal switching points, drawing on concrete examples to do so. Lastly, it discusses climate change mitigation policies’ implications for the agricultural, food, building, transportation, service and manufacturing sectors.
Download or read book International Assessment of Research and Development in Simulation based Engineering and Science written by Sharon C. Glotzer and published by World Scientific. This book was released on 2011 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation-Based Engineering and Science (SBE&S) cuts across disciplines, showing tremendous promise in areas from storm prediction and climate modeling to understanding the brain and the behavior of numerous other complex systems.In this groundbreaking volume, nine distinguished leaders assess the latest research trends, as a result of 52 site visits in Europe and Asia and hundreds of hours of expert interviews, and discuss the implications of their findings for the US government.The authors conclude that while the US remains the quantitative leader in SBE&S research and development, it is very much in danger of losing that edge to Europe and Asia.Commissioned by the National Science Foundation, this multifaceted study will capture the attention of Fortune 500 companies and policymakers.Distinguished contributors: Sharon C Goltzer, University of Michigan, Ann Arbor, USA Sangtae Kim, Morgridge Institute for Research, USA Peter T Cummings, Vanderbilt University, USA and Oak Ridge National Laboratory, USA Abhijit Deshmukh, Texas A&M University, USA Martin Head-Gordon, University of California, Berkeley, USA George Em Karniadakis, Brown University, USA Linda Petzold, University of California, Santa Barbara, USA Celeste Sagui, North Carolina State University, USA Masanobu Shinozuka, University of California, Irvine, USA
Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Download or read book Real Time Optimization written by Dominique Bonvin and published by MDPI. This book was released on 2018-07-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by Roland Platz and published by Springer Nature. This book was released on 2023-10-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Introduction of Uncertainty Quantification Uncertainty Quantification in Dynamics Model Form Uncertainty and Selection incl. Round Robin Challenge Sensor and Information Fusion Virtual Sensing, Certification, and Real-Time Monitoring Surrogate Modeling
Download or read book AIAA Journal written by American Institute of Aeronautics and Astronautics and published by . This book was released on 2008 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by Zhu Mao and published by Springer Nature. This book was released on 2020-10-27 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty
Download or read book Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering Beijing 2022 written by Lanmin Wang and published by Springer Nature. This book was released on 2022-09-19 with total page 2417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-IV) is held in Beijing, China. The PBD-IV Conference is organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering - Technical Committee TC203 on Earthquake Geotechnical Engineering and Associated Problems (ISSMGE-TC203). The PBD-I, PBD-II, and PBD-III events in Japan (2009), Italy (2012), and Canada (2017) respectively, were highly successful events for the international earthquake geotechnical engineering community. The PBD events have been excellent companions to the International Conference on Earthquake Geotechnical Engineering (ICEGE) series that TC203 has held in Japan (1995), Portugal (1999), USA (2004), Greece (2007), Chile (2011), New Zealand (2015), and Italy (2019). The goal of PBD-IV is to provide an open forum for delegates to interact with their international colleagues and advance performance-based design research and practices for earthquake geotechnical engineering.
Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-10 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. - Synthesizes available UQ methods for materials modeling - Provides practical tools and examples for problem solving in modeling material behavior across various length scales - Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design - Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation