Download or read book The Four Pillars of Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2005-08-09 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Download or read book Perspectives on Projective Geometry written by Jürgen Richter-Gebert and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
Download or read book Introduction to Projective Geometry written by C. R. Wylie and published by Courier Corporation. This book was released on 2011-09-12 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Download or read book Projective Geometry written by Albrecht Beutelspacher and published by Cambridge University Press. This book was released on 1998-01-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Download or read book Projective Geometry written by Rey Casse and published by OUP Oxford. This book was released on 2006-08-03 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinatising a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.
Download or read book Perspective and Projective Geometry written by Annalisa Crannell and published by Princeton University Press. This book was released on 2019-12-10 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a unique approach combining art and mathematics, Perspective and Projective Geometry introduces students to the ways that projective geometry applies to perspective art. Geometry, like mathematics as a whole, offers a useful and meaningful lens for understanding the visual world. Exploring pencil-and-paper drawings, photographs, Renaissance paintings, and GeoGebra constructions, this textbook equips students with the geometric tools for projecting a three-dimensional scene onto two dimensions. Organized as a series of exercise modules, this book teaches students through hands-on inquiry and participation. Each lesson begins with a visual puzzle that can be investigated through geometry, followed by exercises that reinforce new concepts and hone students’ analytical abilities. An electronic instructor’s manual available to teachers contains sample syllabi and advice, including suggestions for pacing and grading rubrics for art projects. Drawing vital interdisciplinary connections between art and mathematics, Perspective and Projective Geometry is ideally suited for undergraduate students interested in mathematics or computer graphics, as well as for mathematically inclined students of architecture or art. · Features computer-based GeoGebra modules and hands-on exercises · Contains ample visual examples, math and art puzzles, and proofs with real-world applications · Suitable for college students majoring in mathematics, computer science, and art · Electronic instructor’s manual (available only to teachers)
Download or read book Projective Geometry for Use in Colleges and Schools written by William Proctor Milne and published by . This book was released on 1911 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Curves Surfaces and Projective Varieties written by Mauro Beltrametti and published by European Mathematical Society. This book was released on 2009 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Download or read book Projective Geometry written by Olive Whicher and published by Rudolf Steiner Press. This book was released on 2013 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.
Download or read book Geometry A Comprehensive Course written by Dan Pedoe and published by Courier Corporation. This book was released on 2013-04-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Download or read book Foundations of Geometry written by Karol Borsuk and published by Courier Dover Publications. This book was released on 2018-11-14 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Part One of this comprehensive and frequently cited treatment, the authors develop Euclidean and Bolyai-Lobachevskian geometry on the basis of an axiom system due, in principle, to the work of David Hilbert. Part Two develops projective geometry in much the same way. An Introduction provides background on topological space, analytic geometry, and other relevant topics, and rigorous proofs appear throughout the text. Topics covered by Part One include axioms of incidence and order, axioms of congruence, the axiom of continuity, models of absolute geometry, and Euclidean geometry, culminating in the treatment of Bolyai-Lobachevskian geometry. Part Two examines axioms of incidents and order and the axiom of continuity, concluding with an exploration of models of projective geometry.
Download or read book Projective Geometry for Use in Colleges and Schools written by Milne William Proctor and published by Sagwan Press. This book was released on 2018-02-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Download or read book PROJECTIVE GEOMETRY FOR USE IN written by William P. (William Proctor) 188 Milne and published by . This book was released on 2016-08-27 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Collineations and Conic Sections written by Christopher Baltus and published by Springer Nature. This book was released on 2020-09-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume combines an introduction to central collineations with an introduction to projective geometry, set in its historical context and aiming to provide the reader with a general history through the middle of the nineteenth century. Topics covered include but are not limited to: The Projective Plane and Central Collineations The Geometry of Euclid's Elements Conic Sections in Early Modern Europe Applications of Conics in History With rare exception, the only prior knowledge required is a background in high school geometry. As a proof-based treatment, this monograph will be of interest to those who enjoy logical thinking, and could also be used in a geometry course that emphasizes projective geometry.
Download or read book Projective Geometry and Its Applications to Computer Graphics written by Michael A. Penna and published by Prentice Hall. This book was released on 1986 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book p adic Geometry written by Matthew Baker and published by American Mathematical Soc.. This book was released on 2008 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.
Download or read book Dynamics Statistics and Projective Geometry of Galois Fields written by V. I. Arnold and published by Cambridge University Press. This book was released on 2010-12-02 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.