EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Processing and Characterization of Carbon Nanotubes Reinforced Epoxy Resin Based Multi scale Multi functional Composites

Download or read book Processing and Characterization of Carbon Nanotubes Reinforced Epoxy Resin Based Multi scale Multi functional Composites written by Piyush R. Thakre and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This research is focused on investigating the effect of carbon nanotubes on macroscale composite laminate properties, such as, interlaminar shear strength, interlaminar fracture toughness and electrical conductivity along with studying the micro and nano-scale interactions of carbon nanotubes with epoxy matrix via thermomechanical and electrical characterization of nanocomposites. First an introduction to the typical advanced composite laminates and multifunctional nanocomposites is provided followed by a literature review and a summary of recent status on the processing and the characterization work on nanocomposites and composite laminates. Experimental approach is presented for the development of processing techniques and appropriate characterization methods for carbon nanotubes reinforced epoxy resin based multi-functional nanocomposites and carbon fiber reinforced polymer composite laminates modified with carbon nanotubes. The proposed work section is divided into three sub-sections to describe the processing and the characterization of carbon nanotube reinforced epoxy matrix nanocomposites, woven-carbon fabric epoxy matrix composite laminates modified with selective placement of nanotubes and unidirectional carbon fiber epoxy matrix composite laminates modified with carbon nanotubes. Efforts are focused on comparing the effects of functionalized and unfunctionalized carbon nanotubes on the advanced composite laminates. Covalently functionalized carbon nanotubes are used for improved dispersion and fiber-matrix bonding characteristics and compared with unfunctionalized or pristine carbon nanotubes. The processing of woven carbon fabric reinforced epoxy matrix composite laminates is performed using a vacuum assisted resin transfer molding process with selective placement of carbon nanotubes using a spraying method. The uni-directional carbon fiber epoxy matrix pre-preg composites are processed using a hot press technique along with the spraying method for placement of nanotubes. These macroscale laminates are tested using short beam shear and double cantilever beam experiments for investigating the effect of nanotubes on the interlaminar shear stress and the interlaminar fracture toughness. Fractography is performed using optical microscopy and scanning electron microscopy to investigate the structure-property relationship. The micro and nano-scale interactions of carbon nanotubes and epoxy matrix are studied through the processing of unfunctionalized and functionalized single wall carbon nanotube reinforced epoxy matrix nanocomposites. The multifunctional nature of such nanocomposites is investigated through thermo-mechanical and electrical characterizations.

Book Characterization of Carbon Nanotube Based Composites under Consideration of Defects

Download or read book Characterization of Carbon Nanotube Based Composites under Consideration of Defects written by Moones Rahmandoust and published by Springer. This book was released on 2015-10-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.

Book Carbon Nanotube Reinforced Polymers

Download or read book Carbon Nanotube Reinforced Polymers written by Roham Rafiee and published by Elsevier. This book was released on 2017-10-06 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions

Book Carbon Nanotubes

Download or read book Carbon Nanotubes written by Arvind Agarwal and published by CRC Press. This book was released on 2018-09-03 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Foreword, written by legendary nano pioneer M. Meyyappan, Chief Scientist for Exploration Technology NASA Ames Research Center, Moffett Field, California, USA: "...there is critical need for a book to summarize the status of the field but more importantly to lay out the principles behind the technology. This is what Professor Arvind Agarwal and his co-workers ... have done here." Carbon Nanotubes: Reinforced Metal Matrix Composites reflects the authors’ desire to share the benefits of nanotechnology with the masses by developing metal matrix carbon nanotube (MM-CNT) composites for large-scale applications. Multiwall carbon nanotubes can now be produced on a large scale and at a significantly reduced cost. The book explores potential applications and applies the author’s own research to highlight critical developmental issues for different MM-CNT composites—and then outline novel solutions. With this problem-solving approach, the book explores: Advantages, limitations, and the evolution of processing techniques used for MM-CNT composites Characterization techniques unique to the study of MM-CNT composites—and the limitations of these methods Existing research on different MM-CNT composites, presented in useful tables that include composition, processing method, quality of CNT dispersion, and properties The micro-mechanical strengthening that results from adding CNT The applicability of micro-mechanics models in MM-CNT composites Significance of chemical stability for carbon nanotubes in the metal matrix as a function of processing, and its impact on CNT/metal interface and mechanical properties Computational studies that have not been sufficiently covered although they are essential to research and development The critical issue of CNT dispersion in the metal matrix, as well as a unique way to quantify CNT distribution and subsequently improve control of the processing parameters for obtaining improved properties Carbon Nanotubes: Reinforced Metal Matrix Composites paints a vivid picture of scientific and application achievements in this field. Exploring the mechanisms through which CNTs are enhancing the properties of different metal-based composites, the authors provide a roadmap to help researchers develop MM-CNT composites and choose potential materials for use in emerging areas of technology.

Book Nanotechnology Commercialization

Download or read book Nanotechnology Commercialization written by Thomas O. Mensah and published by John Wiley & Sons. This book was released on 2017-10-20 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating and informative look at state-of-the-art nanotechnology research, worldwide, and its vast commercial potential Nanotechnology Commercialization: Manufacturing Processes and Products presents a detailed look at the state of the art in nanotechnology and explores key issues that must still be addressed in order to successfully commercialize that vital technology. Written by a team of distinguished experts in the field, it covers a range of applications notably: military, space, and commercial transport applications, as well as applications for missiles, aircraft, aerospace, and commercial transport systems. The drive to advance the frontiers of nanotechnology has become a major global initiative with profound economic, military, and environmental implications. Nanotechnology has tremendous commercial and economic implications with a projected $ 1.2 trillion-dollar global market. This book describes current research in the field and details its commercial potential—from work bench to market. Examines the state of the art in nanotechnology and explores key issues surrounding its commercialization Takes a real-world approach, with chapters written from a practical viewpoint, detailing the latest research and considering its potential commercial and defense applications Presents the current research and proposed applications of nanotechnology in such a way as to stimulate further research and development of new applications Written by an all-star team of experts, including pioneer patent-holders and award-winning researchers in nanotechnology The major challenge currently faced by researchers in nanotechnology is successfully transitioning laboratory research into viable commercial products for the 21st century. Written for professionals across an array of research and engineering disciplines, Nanotechnology Commercialization: Manufacturing Processes and Products does much to help them bridge the gap between lab and marketplace.

Book Carbon Nanotubes as Nanofillers Or Fibers for Multifunctional Epoxy based Composites

Download or read book Carbon Nanotubes as Nanofillers Or Fibers for Multifunctional Epoxy based Composites written by Vincent Lutz and published by . This book was released on 2014 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, polymer-matrix composites reinforced with carbon fibers are increasingly used in the whole transport sector (aerospace, automotive and railway industries). However, the obtained parts still suffer from low impact resistance and low damage tolerance. To improve these properties, the matrix precursors have to be combined with organic or inorganic compounds to lead to multi-phased matrices. Among them, carbon nanotubes (CNT) are especially promising for targeting multi-scale reinforcement. Since high quality of the parts are required, continuous-fibers-reinforced composites can be produced by resin transfer molding (RTM) which also offers a reduced cost if compared with high temperature- and high pressure-based processes. However, RTM requires a very low viscosity of the polymer precursors and CNT-filled precursors are far too viscous to be injected on dry performs. In addition, this strategy does not allow for a control of the CNT location and orientation in the final part. In this study, innovative ways have been developed to insert CNT in the preform with local positioning and defined orientation. Deliveries of CNT in the matrix, from a neat carbon multi-nanotubes fiber produced by direct spinning, or from a CNT grown on carbon fiber were investigated in two types of epoxy matrices (with very different TG). Different polymer matrix/fiber interfaces have been generated using neat carbon multi-nanotubes fiber, CNT grown on carbon fiber and conventional carbon fiber, with or without sizing. A fine mechanical characterization of various fibers and particularly the measurement of single fiber interfacial properties have been performed in order to determine mechanical performance of continuous fiber reinforced composites. In addition, the nature of adhesion and quality of matrix/fiber interface have been fully evaluated by different multi-scale analyses and suitable microstructural observations.

Book Epoxy Composites

Download or read book Epoxy Composites written by Jyotishkumar Parameswaranpillai and published by John Wiley & Sons. This book was released on 2021-06-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a one-stop resource for in-depth knowledge on epoxy composites from leading voices in the field Used in a wide variety of materials engineering applications, epoxy composites are highly relevant to the work of engineers and scientists in many fields. Recent developments have allowed for significant advancements in their preparation, processing and characterization that are highly relevant to the aerospace and automobile industry, among others. In Epoxy Composites: Fabrication, Characterization and Applications, a distinguished team of authors and editors deliver a comprehensive and straightforward summary of the most recent developments in the area of epoxy composites. The book emphasizes their preparation, characterization and applications, providing a complete understanding of the correlation of rheology, cure reaction, morphology, and thermo-mechanical properties with filler dispersion. Readers will learn about a variety of topics on the cutting-edge of epoxy composite fabrication and characterization, including smart epoxy composites, theoretical modeling, recycling and environmental issues, safety issues, and future prospects for these highly practical materials. Readers will also benefit from the inclusion of: A thorough introduction to epoxy composites, their synthesis and manufacturing, and micro- and nano-scale structure formation in epoxy and clay nanocomposites An exploration of long fiber reinforced epoxy composites and eco-friendly epoxy-based composites Practical discussions of the processing of epoxy composites based on carbon nanomaterials and the thermal stability and flame retardancy of epoxy composites An analysis of the spectroscopy and X-ray scattering studies of epoxy composites Perfect for materials scientists, polymer chemists, and mechanical engineers, Epoxy Composites: Fabrication, Characterization and Applications will also earn a place in the libraries of engineering scientists working in industry and process engineers seeking a comprehensive and exhaustive resource on epoxy composites.

Book Carbon Nanotube Based Nanocomposites

Download or read book Carbon Nanotube Based Nanocomposites written by Anna Boczkowska and published by Mdpi AG. This book was released on 2021-10-18 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Special issue, "Carbon nanotube-based nanocomposites", provides an extensive overview of current trends in the area of polymer matrix nanocomposites based on carbon nanotubes (CNTs) from the papers contributed by internationally recognized specialists. The Special Issue brings together 7 papers that deal with the various aspects of processing, as well as experimental and analytical approaches to carbon nanotube-based nanocomposites fabrication, characterization and application. Each paper demonstrates how enhancements in materials, processes and characterization techniques can improve performance in the field of engineering. The Special issue gives a unique opportunity to discover the latest research on carbon nanotube-based nanocomposites from different laboratories. Numerous references are given at the end of each paper to enable the reader to explore the topics covered in greater detail. Most of the papers describe the improvement of electrical and mechanical properties of polymer-based nanocomposites due to the application of CNTs, independently on the matrix used: (ethylene vinyl acetate) copolymer, hot melt copolyamides, epoxy and silicone resins. In each case, the relationships between the processing parameters and microstructure of obtained nanocomposites were described. The synergistic effect of hybrid nanofillers was also explored in nanocomposites with carbon and halloysite nanotubes. The effect of carbon nanotubes on the wear behavior of nanocomposites based on epoxy resin was investigated as well. The original results on the synthesis and characterization of composite shear thickening fluids containing carbon nanofillers are presented. The addition of the CNTs modified the impact absorption ability of such fluids. The presented Special Issue results also proved that CNTs can be used to obtain more resistant and durable cement-based composites.

Book Modeling  Processing  Fabrication and Characterization of Carbon Nanomaterials Reinforced Polymer Composites

Download or read book Modeling Processing Fabrication and Characterization of Carbon Nanomaterials Reinforced Polymer Composites written by Mohammad Rafiee and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fiber and matrix-dominant properties of fiber-reinforced polymer composites are important in many advanced technological fields, such as aviation, aerospace, transportation, energy industry, etc. Still, pre-mixing the polymer matrix with nanoparticles may enhance the through-thickness or matrix-dominant properties, and surface treatment of fiber reinforcements with nanoparticles, on the other hand, may improve the in-plane or fiber-dominated properties of laminated composites, as well as interfacial adhesion. A novel manufacturing method that combines a spraying process with nanoparticle/epoxy mixture technique was introduced to incorporate carbon nanoparticles for enhancement of thermal properties of multiscale laminates. Several graphene-based nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoplatelets (GNPs) and multi-walled carbon nanotubes (MWCNTs) were employed to modify the epoxy matrix and the surface of glass fibers. Multiscale glass fiber-reinforced composites were fabricated from unmodified and modified epoxy, as well as fibers, using the vacuum-assisted resin transfer molding (VARTM) process. The composites obtained combined improvements in both the fiber and matrix- dominant properties, resulting in superior composites. The morphological, rheological, thermal and mechanical properties of the glass fiber-reinforced multiscale composites were investigated. The thermal properties of the epoxy/nanoparticle composites were studied through differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and thermal conductivity measurements. The tensile, bending, vibration, interlaminar shear strength (ILSS) and thermal characterization results indicated that the introduction of GNPs, GO, rGO, and MWCNTs enhanced the themo-mechanical properties. The fracture surfaces of the fiber-reinforced composites were examined by scanning electron microscopy (SEM) and the micrographs were analyzed to comment on the mechanical results.

Book Carbon Nanotube Polymer Composites

Download or read book Carbon Nanotube Polymer Composites written by Dimitrios Tasis and published by Royal Society of Chemistry. This book was released on 2015-11-09 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.

Book Characterization of Carbon Nanotube Reinforced Polymer Composite Material Based on Multiscale Finite Element Model and Probabilistic Approach

Download or read book Characterization of Carbon Nanotube Reinforced Polymer Composite Material Based on Multiscale Finite Element Model and Probabilistic Approach written by Jorge Alberto Palacios Moreno and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon-Nanotube-Reinforced-Polymer-Composite (CNRPC) materials have generated widespread interest over the last several years in practical engineering applications, such as aeronautical and aerospace engineering structures. However, studies still need to be carried out to characterize their mechanical properties, especially the dynamic properties, and the effects of defects on the mechanical properties. Experimental investigations intended for this purpose have limitations and, in most cases, reliable cost-effective experimental work could not be carried out. Computational modelling and simulation encompassing multiscale material behavior provide an alternate approach in this regard to characterize the material behavior. A probabilistic approach serves as a suitable approach to characterize the effects of material and structural defects. The present thesis reports the development of a computational framework of the Representative Volume Element (RVE) of a CNRPC material model to determine its static and dynamic responses, and also for the evaluation of its static and dynamic reliabilities based on a probabilistic characterization approach. A 3D multiscale finite element model of the RVE of the nanocomposite material consisting of a polymer matrix, a Single-Walled-Carbon-Nanotube (SWCN) and an interface region has been constructed for this purpose. The multiscale modeling is performed in terms of using different theories and corresponding strain energies to model the individual parts of the RVE of the CNRPC material. The macroscale continuum mechanics is used for the polymer matrix, the mesoscale mechanics is used for the interface region, and the nanoscale-level atomistic mechanics is used for the SWCN. The polymer matrix is modeled using the Mooney-Rivlin strain energy function to calculate its non-linear response, while the interface region is modeled via the van der Waals links. The SWCN is first modeled as a space frame structure by using the Morse potential, and then as a thin shell based on a suitable shell theory. For this purpose, the suitability and the accuracy of popular shell theories for use in the multiscale model of the RVE are assessed.

Book The Structural Integrity of Carbon Fiber Composites

Download or read book The Structural Integrity of Carbon Fiber Composites written by Peter W. R Beaumont and published by Springer. This book was released on 2016-11-26 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.

Book Carbon Nanotube Enhanced Aerospace Composite Materials

Download or read book Carbon Nanotube Enhanced Aerospace Composite Materials written by A. Paipetis and published by Springer Science & Business Media. This book was released on 2012-09-13 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.

Book Investigation of the Resin Film Infusion Process for Multi scale Composites Based on the Study of Resin Flow  Void Formation and Carbon Nanotube Distribution

Download or read book Investigation of the Resin Film Infusion Process for Multi scale Composites Based on the Study of Resin Flow Void Formation and Carbon Nanotube Distribution written by Simon Baril-Gosselin and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aerospace industry is steadily increasing its use of polymer-matrix composites (PMCs) in airframe structures as it seeks to benefit from the high specific in-plane strength of laminated structural PMCs. However, PMC laminates suffer from low interlaminar shear strength due to their weaker polymer-matrix. Minimising risks of delamination is of paramount importance towards improving the safety of PMC structures. Multi-scale composites that are reinforced by both continuous fibres and nano-particles were identified as a potential solution for improving toughness and reducing risks of delamination in PMCs. An important challenge in the fabrication of multi-scale PMCs is to ensure that nano-particles are dispersed uniformly within the matrix. This is only achieved through minimal filtration of nano-particles during processing. The short resin flow lengths enabled by the resin film infusion (RFI) process make this process a prime candidate for the fabrication of multi-scale PMCs. The main objective of this thesis is to validate the possibility of using out-of-autoclave RFI for fabricating multi-scale carbon fibre composites featuring epoxy resins modified with carbon nanotubes (CNTs). The work is accomplished in 5 phases. In phase 1, preliminary work investigates the fabrication of PMCs with and without CNTs, using out-of-autoclave RFI. Results show that the types of reinforcement and matrix have strong effects on the porosity and interlaminar strength of PMCs. These results ushered the need for more thorough investigation and understanding of the RFI process, beyond what is available in the literature. Phases 2 to 4 focus on understanding how the choices of materials and types of stacking configuration can affect parts made using RFI. Phase 2, the in-situ characterisation of resin saturation during RFI is performed. Results enable a detailed analysis of the way in which resin flows around and inside yarns. Phase 3 consists in the characterisation of void formation during RFI. Two types of voids are observed: flow-induced voids resulting from either the merging of resin flow fronts or the drainage from capillary action; and gas-induced voids resulting from resin volatiles going out of solution and remaining in the resin matrix. In this work, the greatest source of porosity was caused by volatiles. In phase 4, the distribution and filtration of CNTs during RFI processing is characterised. Results show that processing choices can limit filtration and that clustering of CNTs prevents a uniform dispersion of CNTs in PMCs. Finally, the possibility of using RFI for making a multi-scale PMC demonstrator part is investigated. The work culminated with the successful fabrication of a delta-stringer panel. This thesis makes several important contributions to the knowledge pertaining to multi-scale PMC processing and performance, and to RFI. Firstly, it provides a robust description of RFI processing beyond was it available in literature, through in-situ observations of resin flow and void formation. Secondly, it assesses the viability of RFI for producing multi-scale PMCs featuring CNTs. In-situ observations of RFI processing enabled the identification of mechanisms leading to a loss of CNT dispersion during processing, partly explaining the minimal improvements in the interlaminar properties of composites observed when adding CNTs to the matrix. Thirdly, the fabrication of a delta-stringer panel made of a multi-scale PMC was successful, making it the first validation of the scalability of out-of-autoclave RFI processing for manufacturing multi-scale PMCs. The work presented herein contributed to the dissemination of knowledge; one conference paper was presented at ICCM20 (20th International Conference on Composite Materials), and another was presented at CANCOM2017 (10th Canadian-International Conference on Composites), and one journal article written in collaboration with project partners was submitted to Composites Science and Technology.

Book Multiscale Characterization of Carbon Fiber reinforced Epoxy Composites

Download or read book Multiscale Characterization of Carbon Fiber reinforced Epoxy Composites written by Christopher B. Montgomery and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Composite Materials for Aerospace Engineering

Download or read book Advanced Composite Materials for Aerospace Engineering written by Sohel Rana and published by Woodhead Publishing. This book was released on 2016-04-26 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book’s main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. Contains contributions from leading experts in the field Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry Discusses both existing commercial composite materials and those currently under research or development