EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book WSDM 15

    Book Details:
  • Author : Xueqi Cheng
  • Publisher :
  • Release : 2015
  • ISBN : 9781450333177
  • Pages : 466 pages

Download or read book WSDM 15 written by Xueqi Cheng and published by . This book was released on 2015 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the Fifth SIAM International Conference on Data Mining

Download or read book Proceedings of the Fifth SIAM International Conference on Data Mining written by Hillol Kargupta and published by SIAM. This book was released on 2005-04-01 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. Advances in information technology and data collection methods have led to the availability of large data sets in commercial enterprises and in a wide variety of scientific and engineering disciplines. The field of data mining draws upon extensive work in areas such as statistics, machine learning, pattern recognition, databases, and high performance computing to discover interesting and previously unknown information in data. This conference results in data mining, including applications, algorithms, software, and systems.

Book Graph Mining

    Book Details:
  • Author : Deepayan Chakrabarti
  • Publisher : Morgan & Claypool Publishers
  • Release : 2012-10-01
  • ISBN : 160845116X
  • Pages : 209 pages

Download or read book Graph Mining written by Deepayan Chakrabarti and published by Morgan & Claypool Publishers. This book was released on 2012-10-01 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions

Book Network Embedding

    Book Details:
  • Author : Cheng Yang
  • Publisher : Morgan & Claypool Publishers
  • Release : 2021-03-25
  • ISBN : 1636390455
  • Pages : 244 pages

Download or read book Network Embedding written by Cheng Yang and published by Morgan & Claypool Publishers. This book was released on 2021-03-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL) and the background and rise of network embeddings (NE). It introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions. Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.

Book Online Portfolio Selection

Download or read book Online Portfolio Selection written by Bin Li and published by CRC Press. This book was released on 2018-10-30 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment. The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that: Introduce OLPS and formulate OLPS as a sequential decision task Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art Investigate possible future directions Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment. Readers are encouraged to visit the authors’ website for updates: http://olps.stevenhoi.org.

Book Deep Learning for Matching in Search and Recommendation

Download or read book Deep Learning for Matching in Search and Recommendation written by Jun Xu and published by . This book was released on 2020-07-14 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This survey gives a systematic and comprehensive introduction to the deep matching models for search and recommendation.

Book Web Mining

    Book Details:
  • Author : Anthony Scime
  • Publisher : IGI Global
  • Release : 2005-01-01
  • ISBN : 9781591404149
  • Pages : 454 pages

Download or read book Web Mining written by Anthony Scime and published by IGI Global. This book was released on 2005-01-01 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Web Mining is moving the World Wide Web toward a more useful environment in which users can quickly and easily find the information they need. Web Mining uses document content, hyperlink structure, and usage statistics to assist users in meeting their needed information. This book provides a record of current research and practical applications in Web searching. It includes techniques that will improve the utilization of the Web by the design of Web sites, as well as the design and application of search agents. This book presents research and related applications in a manner that encourages additional work toward improving the reduction of information overflow, which is so common today in Web search results.

Book Advances in Intelligent Data Analysis IX

Download or read book Advances in Intelligent Data Analysis IX written by Paul R. Cohen and published by Springer Science & Business Media. This book was released on 2010-05-04 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Intelligent Data Analysis, IDA 2010, held in Tucson, AZ, USA in May 2010. The 21 revised papers presented together with 2 invited papers were carefully reviewed and selected from more than 40 submissions. All current aspects of intelligent data analysis are addressed, particularly intelligent support for modeling and analyzing complex, dynamical systems. Topics covered are end-to-end software systems; modeling complex systems such as gene regulatory networks, economic systems, ecological systems, resources such as water, and dynamical social systems such as online communities; and robustness, scaling properties and other usability issues.

Book Text Mining and Analysis

    Book Details:
  • Author : Dr. Goutam Chakraborty
  • Publisher : SAS Institute
  • Release : 2014-11-22
  • ISBN : 1612907873
  • Pages : 340 pages

Download or read book Text Mining and Analysis written by Dr. Goutam Chakraborty and published by SAS Institute. This book was released on 2014-11-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.

Book Social Network Data Analytics

Download or read book Social Network Data Analytics written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Book Web and Big Data

    Book Details:
  • Author : Bohan Li
  • Publisher : Springer Nature
  • Release : 2023-02-13
  • ISBN : 303125158X
  • Pages : 590 pages

Download or read book Web and Big Data written by Bohan Li and published by Springer Nature. This book was released on 2023-02-13 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set, LNCS 13421, 13422 and 13423, constitutes the thoroughly refereed proceedings of the 6th International Joint Conference, APWeb-WAIM 2022, held in Nanjing, China, in August 2022. The 75 full papers presented together with 45 short papers, and 5 demonstration papers were carefully reviewed and selected from 297 submissions. The papers are organized around the following topics: Big Data Analytic and Management, Advanced database and web applications, Cloud Computing and Crowdsourcing, Data Mining, Graph Data and Social Networks, Information Extraction and Retrieval, Knowledge Graph, Machine Learning, Query processing and optimization, Recommender Systems, Security, privacy, and trust and Blockchain data management and applications, and Spatial and multi-media data.

Book Web and Big Data

    Book Details:
  • Author : Xiangyu Song
  • Publisher : Springer Nature
  • Release :
  • ISBN : 981972421X
  • Pages : 539 pages

Download or read book Web and Big Data written by Xiangyu Song and published by Springer Nature. This book was released on with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Social Network Technologies and Applications

Download or read book Handbook of Social Network Technologies and Applications written by Borko Furht and published by Springer Science & Business Media. This book was released on 2010-11-04 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.

Book Learning to Classify Text Using Support Vector Machines

Download or read book Learning to Classify Text Using Support Vector Machines written by Thorsten Joachims and published by Springer Science & Business Media. This book was released on 2002-04-30 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.

Book Collaborative Computing  Networking  Applications and Worksharing

Download or read book Collaborative Computing Networking Applications and Worksharing written by Honghao Gao and published by Springer Nature. This book was released on 2022-01-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.

Book Feature Engineering for Machine Learning and Data Analytics

Download or read book Feature Engineering for Machine Learning and Data Analytics written by Guozhu Dong and published by CRC Press. This book was released on 2018-03-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Book Cognitive Multitasking     Towards Augmented Intelligence

Download or read book Cognitive Multitasking Towards Augmented Intelligence written by Yew Soon Ong and published by Frontiers Media SA. This book was released on 2021-03-04 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: