EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Probabilistic Methods in Geotechnical Engineering

Download or read book Probabilistic Methods in Geotechnical Engineering written by D. V. Griffiths and published by Springer Science & Business Media. This book was released on 2007-12-14 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use probabilistic techniques to solve problems in geotechnical engineering. The book reviews the statistical theories needed to develop the methodologies and interpret the results. Next, the authors explore probabilistic methods of analysis, such as the first order second moment method, the point estimate method, and random set theory. Examples and case histories guide you step by step in applying the techniques to particular problems.

Book Probabilistic Machine Learning for Civil Engineers

Download or read book Probabilistic Machine Learning for Civil Engineers written by James-A. Goulet and published by MIT Press. This book was released on 2020-04-14 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.

Book Probabilistic Methods in Structural Engineering

Download or read book Probabilistic Methods in Structural Engineering written by Guiliano Augusti and published by CRC Press. This book was released on 1984-07-19 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most important applications of probablistic and statistical approaches and procedures to structural engineering.

Book Bayesian Methods for Structural Dynamics and Civil Engineering

Download or read book Bayesian Methods for Structural Dynamics and Civil Engineering written by Ka-Veng Yuen and published by John Wiley & Sons. This book was released on 2010-02-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen

Book Probability  Statistics  and Decision for Civil Engineers

Download or read book Probability Statistics and Decision for Civil Engineers written by Jack R Benjamin and published by Courier Corporation. This book was released on 2014-07-16 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This text covers the development of decision theory and related applications of probability. Extensive examples and illustrations cultivate students' appreciation for applications, including strength of materials, soil mechanics, construction planning, and water-resource design. Emphasis on fundamentals makes the material accessible to students trained in classical statistics and provides a brief introduction to probability. 1970 edition"--

Book Probabilistic Methods in Geotechnical Engineering

Download or read book Probabilistic Methods in Geotechnical Engineering written by K.S. Li and published by CRC Press. This book was released on 2020-08-19 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of this conference contain keynote addresses on recent developments in geotechnical reliability and limit state design in geotechnics. It also contains invited lectures on such topics as modelling of soil variability, simulation of random fields and probability of rock joints. Contents: Keynote addresses on recent development on geotechnical reliability and limit state design in geotechnics, and invited lectures on modelling of soil variability, simulation of random field, probabilistic of rock joints, and probabilistic design of foundations and slopes. Other papers on analytical techniques in geotechnical reliability, modelling of soil properties, and probabilistic analysis of slopes, embankments and foundations.

Book Probabilistic Methods in Civil Engineering

Download or read book Probabilistic Methods in Civil Engineering written by Pol D. Spanos and published by . This book was released on 1988 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability  Reliability  and Statistical Methods in Engineering Design

Download or read book Probability Reliability and Statistical Methods in Engineering Design written by Achintya Haldar and published by . This book was released on 2000 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the tools to assess product reliability! Haldar and Mahadevan crystallize the research and experience of the last few decades into the most up-to-date book on risk-based design concepts in engineering available. The fundamentals of reliability and statistics necessary for risk-based engineering analysis and design are clearly presented. And with the help of many practical examples integrated throughout the text, the material is made very relevant to today's practice. Key Features * Covers all the fundamental concepts and mathematical skills needed to conduct reliability assessments. * Presents the most widely-used reliability assessment methods. * Concepts that are required for the implementation of risk-based design in practical problems are developed gradually. * Both risk-based and deterministic design concepts are included to show the transition from traditional to modern design practice.

Book The Probabilistic Method

Download or read book The Probabilistic Method written by Noga Alon and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Book Introduction to Imprecise Probabilities

Download or read book Introduction to Imprecise Probabilities written by Thomas Augustin and published by John Wiley & Sons. This book was released on 2014-04-11 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the theory has become widely accepted and has beenfurther developed, but a detailed introduction is needed in orderto make the material available and accessible to a wide audience.This will be the first book providing such an introduction,covering core theory and recent developments which can be appliedto many application areas. All authors of individual chapters areleading researchers on the specific topics, assuring high qualityand up-to-date contents. An Introduction to Imprecise Probabilities provides acomprehensive introduction to imprecise probabilities, includingtheory and applications reflecting the current state if the art.Each chapter is written by experts on the respective topics,including: Sets of desirable gambles; Coherent lower (conditional)previsions; Special cases and links to literature; Decision making;Graphical models; Classification; Reliability and risk assessment;Statistical inference; Structural judgments; Aspects ofimplementation (including elicitation and computation); Models infinance; Game-theoretic probability; Stochastic processes(including Markov chains); Engineering applications. Essential reading for researchers in academia, researchinstitutes and other organizations, as well as practitionersengaged in areas such as risk analysis and engineering.

Book Hydraulic Structures

    Book Details:
  • Author : Walter O. Wunderlich
  • Publisher : Amer Society of Civil Engineers
  • Release : 2005
  • ISBN : 9780784406724
  • Pages : 646 pages

Download or read book Hydraulic Structures written by Walter O. Wunderlich and published by Amer Society of Civil Engineers. This book was released on 2005 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walter Wunderlich introduces readers to the field of probability theory and its applications in engineering.

Book Probability Concepts in Engineering  Emphasis on Applications to Civil and Environmental Engineering  2e Instructor Site

Download or read book Probability Concepts in Engineering Emphasis on Applications to Civil and Environmental Engineering 2e Instructor Site written by Alfredo H-S. Ang and published by John Wiley & Sons. This book was released on 2007 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply the principles of probability and statistics to realistic engineering problems The easiest and most effective way to learn the principles of probabilistic modeling and statistical inference is to apply those principles to a variety of applications. That’s why Ang and Tang’s Second Edition of Probability Concepts in Engineering (previously titled Probability Concepts in Engineering Planning and Design) explains concepts and methods using a wide range of problems related to engineering and the physical sciences, particularly civil and environmental engineering. Now extensively revised with new illustrative problems and new and expanded topics, this Second Edition will help you develop a thorough understanding of probability and statistics and the ability to formulate and solve real-world problems in engineering. The authors present each basic principle using different examples, and give you the opportunity to enhance your understanding with practice problems. The text is ideally suited for students, as well as those wishing to learn and apply the principles and tools of statistics and probability through self-study. Key Features in this 2nd Edition: A new chapter (Chapter 5) covers Computer-Based Numerical and Simulation Methods in Probability, to extend and expand the analytical methods to more complex engineering problems. New and expanded coverage includes distribution of extreme values (Chapter 3), the Anderson-Darling method for goodness-of-fit test (Chapter 6), hypothesis testing (Chapter 6), the determination of confidence intervals in linear regression (Chapter 8), and Bayesian regression and correlation analyses (Chapter 9). Many new exercise problems in each chapter help you develop a working knowledge of concepts and methods. Provides a wide variety of examples, including many new to this edition, to help you learn and understand specific concepts. Illustrates the formulation and solution of engineering-type probabilistic problems through computer-based methods, including developing computer codes using commercial software such as MATLAB and MATHCAD. Introduces and develops analytical probabilistic models and shows how to formulate engineering problems under uncertainty, and provides the fundamentals for quantitative risk assessment.

Book Handbook of Probabilistic Models

Download or read book Handbook of Probabilistic Models written by Pijush Samui and published by Butterworth-Heinemann. This book was released on 2019-10-05 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Book Applications of Statistics and Probability in Civil Engineering

Download or read book Applications of Statistics and Probability in Civil Engineering written by Michael Faber and published by CRC Press. This book was released on 2011-07-15 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the pressure of harsh environmental conditions and natural hazards, large parts of the world population are struggling to maintain their livelihoods. Population growth, increasing land utilization and shrinking natural resources have led to an increasing demand of improved efficiency of existing technologies and the development of new ones. A

Book Reliability based Design in Civil Engineering

Download or read book Reliability based Design in Civil Engineering written by Milton Edward Harr and published by . This book was released on 1987 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probabilistic Design for Optimization and Robustness for Engineers

Download or read book Probabilistic Design for Optimization and Robustness for Engineers written by Bryan Dodson and published by John Wiley & Sons. This book was released on 2014-10-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Design for Optimization and Robustness: Presents the theory of modeling with variation using physical models and methods for practical applications on designs more insensitive to variation. Provides a comprehensive guide to optimization and robustness for probabilistic design. Features examples, case studies and exercises throughout. The methods presented can be applied to a wide range of disciplines such as mechanics, electrics, chemistry, aerospace, industry and engineering. This text is supported by an accompanying website featuring videos, interactive animations to aid the readers understanding.

Book Probabilistic Machine Learning

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.