Download or read book Mathematical Analysis written by Tom M. Apostol and published by . This book was released on 2004 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Real Analysis written by Gerald B. Folland and published by John Wiley & Sons. This book was released on 2013-06-11 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
Download or read book Real Mathematical Analysis written by Charles Chapman Pugh and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Download or read book Functional Analysis written by Walter Rudin and published by McGraw-Hill Companies. This book was released on 1973 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Download or read book Elementary Classical Analysis written by Jerrold E. Marsden and published by Macmillan. This book was released on 1993-03-15 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Download or read book Elementary Analysis written by Kenneth A. Ross and published by CUP Archive. This book was released on 2014-01-15 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Real and Functional Analysis written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
Download or read book Real Analysis with Real Applications written by Kenneth R. Davidson and published by . This book was released on 2002 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a progressive but flexible format, this book contains a series of independent chapters that show how the principles and theory of real analysis can be applied in a variety of settings-in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. Chapter topics under the abstract analysis heading include: the real numbers, series, the topology of R^n, functions, normed vector spaces, differentiation and integration, and limits of functions. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. For math enthusiasts with a prior knowledge of both calculus and linear algebra.
Download or read book Principles of Mathematical Analysis written by Walter Rudin and published by McGraw-Hill Publishing Company. This book was released on 1976 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Download or read book Mathematical Analysis I written by Vladimir A. Zorich and published by Springer Science & Business Media. This book was released on 2004-01-22 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Download or read book Principles of Mathematical Modeling written by Clive Dym and published by Elsevier. This book was released on 2004-08-10 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, and social decision making. Prospective students should have already completed courses in elementary algebra, trigonometry, and first-year calculus and have some familiarity with differential equations and basic physics. - Serves as an introductory text on the development and application of mathematical models - Focuses on techniques of particular interest to engineers, scientists, and others who model continuous systems - Offers more than 360 problems, providing ample opportunities for practice - Covers a wide range of interdisciplinary topics--from engineering to economics to the sciences - Uses straightforward language and explanations that make modeling easy to understand and apply New to this Edition: - A more systematic approach to mathematical modeling, outlining ten specific principles - Expanded and reorganized chapters that flow in an increasing level of complexity - Several new problems and updated applications - Expanded figure captions that provide more information - Improved accessibility and flexibility for teaching
Download or read book The Way I Remember it written by Walter Rudin and published by American Mathematical Soc.. This book was released on 1992 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walter Rudin's memoirs should prove to be a delightful read specifically to mathematicians, but also to historians who are interested in learning about his colorful history and ancestry. Characterized by his personal style of elegance, clarity, and brevity, Rudin presents in the first part of the book his early memories about his family history, his boyhood in Vienna throughout the 1920s and 1930s, and his experiences during World War II. Part II offers samples of his work, in which he relates where problems came from, what their solutions led to, and who else was involved.
Download or read book Analysis I written by Terence Tao and published by Springer. This book was released on 2016-08-29 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Download or read book Introduction to Analysis written by Maxwell Rosenlicht and published by Courier Corporation. This book was released on 2012-05-04 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Download or read book Real Analysis and Applications written by Kenneth R. Davidson and published by Springer Science & Business Media. This book was released on 2009-10-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.
Download or read book Understanding Analysis written by Stephen Abbott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Download or read book Principles of Real Analysis written by Charalambos D. Aliprantis and published by Gulf Professional Publishing. This book was released on 1998-08-26 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new, Third Edition of this successful text covers the basic theory of integration in a clear, well-organized manner. The authors present an imaginative and highly practical synthesis of the "Daniell method" and the measure theoretic approach. It is the ideal text for undergraduate and first-year graduate courses in real analysis. This edition offers a new chapter on Hilbert Spaces and integrates over 150 new exercises. New and varied examples are included for each chapter. Students will be challenged by the more than 600 exercises. Topics are treated rigorously, illustrated by examples, and offer a clear connection between real and functional analysis. This text can be used in combination with the authors' Problems in Real Analysis, 2nd Edition, also published by Academic Press, which offers complete solutions to all exercises in the Principles text. Key Features: * Gives a unique presentation of integration theory * Over 150 new exercises integrated throughout the text * Presents a new chapter on Hilbert Spaces * Provides a rigorous introduction to measure theory * Illustrated with new and varied examples in each chapter * Introduces topological ideas in a friendly manner * Offers a clear connection between real analysis and functional analysis * Includes brief biographies of mathematicians "All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student." --J. Lorenz in Zentralblatt für Mathematik "...a clear and precise treatment of the subject. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use." --CASPAR GOFFMAN, Department of Mathematics, Purdue University