EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design of High Performance CMOS Voltage Controlled Oscillators

Download or read book Design of High Performance CMOS Voltage Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Book The Design of Low Noise Oscillators

Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

Book Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems

Download or read book Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems written by Alper Demir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.

Book Pll Performance  Simulation and Design

Download or read book Pll Performance Simulation and Design written by Dean Banerjee and published by Dog Ear Publishing. This book was released on 2006-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.

Book Microwave and Wireless Synthesizers

Download or read book Microwave and Wireless Synthesizers written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2021-04-27 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.

Book The Designer s Guide to Jitter in Ring Oscillators

Download or read book The Designer s Guide to Jitter in Ring Oscillators written by John A. McNeill and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide emphasizes jitter for time domain applications so that there is not a need to translate from frequency domain. This provides a more direct path to the results for designing in an application area where performance is specified in the time domain. The book includes classification of oscillator types and an exhaustive guide to existing research literature. It also includes classification of measurement techniques to help designers understand how the eventual performance of circuit design is verified.

Book Instructor s Solution Manaul for Operation and Modeling of the Mo 3rd Ed

Download or read book Instructor s Solution Manaul for Operation and Modeling of the Mo 3rd Ed written by Charles Batchelor Professor of Electrical Engineering Yannis Tsividis and published by . This book was released on 2010-12-14 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Temperature  and Supply Voltage Independent Time References for Wireless Sensor Networks

Download or read book Temperature and Supply Voltage Independent Time References for Wireless Sensor Networks written by Valentijn De Smedt and published by Springer. This book was released on 2014-11-07 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the possible circuit solutions to overcome the temperature and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations. Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface. All 6 implementations are subject to an elaborate study of frequency stability, phase noise and power consumption. In the final chapter all blocks are compared to the state of the art.

Book RF CMOS Oscillators for Modern Wireless Applications

Download or read book RF CMOS Oscillators for Modern Wireless Applications written by Masoud Babaie and published by River Publishers Circuits and. This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable.

Book Design of High performance VCOs for Communications

Download or read book Design of High performance VCOs for Communications written by Liang Dai and published by . This book was released on 2002 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding Jitter and Phase Noise

Download or read book Understanding Jitter and Phase Noise written by Nicola Da Dalt and published by Cambridge University Press. This book was released on 2018-02-22 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain an intuitive understanding of jitter and phase noise with this authoritative guide. Leading researchers provide expert insights on a wide range of topics, from general theory and the effects of jitter on circuits and systems, to key statistical properties and numerical techniques. Using the tools provided in this book, you will learn how and when jitter and phase noise occur, their relationship with one another, how they can degrade circuit performance, and how to mitigate their effects - all in the context of the most recent research in the field. Examine the impact of jitter in key application areas, including digital circuits and systems, data converters, wirelines, and wireless systems, and learn how to simulate it using the accompanying Matlab code. Supported by additional examples and exercises online, this is a one-stop guide for graduate students and practicing engineers interested in improving the performance of modern electronic circuits and systems.

Book Principles of Data Conversion System Design

Download or read book Principles of Data Conversion System Design written by Behzad Razavi and published by Wiley-IEEE Press. This book was released on 1995 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced text and reference covers the design and implementation of integrated circuits for analog-to-digital and digital-to-analog conversion. It begins with basic concepts and systematically leads the reader to advanced topics, describing design issues and techniques at both circuit and system level. Gain a system-level perspective of data conversion units and their trade-offs with this state-of-the art book. Topics covered include: sampling circuits and architectures, D/A and A/D architectures; comparator and op amp design; calibration techniques; testing and characterization; and more!

Book All Digital Frequency Synthesizer in Deep Submicron CMOS

Download or read book All Digital Frequency Synthesizer in Deep Submicron CMOS written by Robert Bogdan Staszewski and published by John Wiley & Sons. This book was released on 2006-09-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 2003 with total page 1198 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Design of Modern Microwave Oscillators for Wireless Applications

Download or read book The Design of Modern Microwave Oscillators for Wireless Applications written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2005-05-27 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delivering the best possible solution for phase noise and outputpower efficiency in oscillators This complete and thorough analysis of microwave oscillatorsinvestigates all aspects of design, with particular emphasis onoperating conditions, choice of resonators and transistors, phasenoise, and output power. It covers both bipolar transistors andFETs. Following the authors' guidance, readers learn how to designmicrowave oscillators and VCOs that can be tuned over a very widefrequency range, yet have good phase noise, are low cost, and aresmall in size. All the essential topics in oscillator design anddevelopment are covered, including: * Device and resonator technology * Study of noise sources * Analysis methods * Design, calculation, and optimization methodologies * Practical design of single and coupled oscillators While most of the current literature in the field concentrates onclassic design strategies based on measurements, simulation, andoptimization of output power and phase noise, this text offers aunique approach that focuses on the complete understanding of thedesign process. The material demonstrates important design rulesstarting with the selection of best oscillator topology, choice oftransistors, and complete phase noise analysis that leads tooptimum performance of all relevant oscillator features. Alsoincluded are CMOS oscillators, which recently have become importantin cellular applications. For readers interested in specializedapplications and topics, a full chapter provides all the necessaryreferences. The contents of the text fall into two major categories: * Chapters 1 through 9 deal with a very detailed and expandedsingle resonator oscillator, including a thorough treatment of bothnonlinear analysis and phase noise * Chapters 10 and 11 use the knowledge obtained and apply it tomultiple coupled oscillators (synchronized oscillators) This text is partially based on research sponsored by the DefenseAdvanced Research Projects Agency (DARPA) and the United StatesArmy and conducted by Synergy Microwave Corporation. With thewealth of information provided for the analysis and practicaldesign of single and synchronized low-noise microwave oscillators,it is recommended reading for all RF microwave engineers. Inaddition, the text's comprehensive, step-by-step approach makes itan excellent graduate-level textbook.

Book Rhythms of the Brain

    Book Details:
  • Author : G. Buzsáki
  • Publisher : Oxford University Press
  • Release : 2011
  • ISBN : 0199828237
  • Pages : 465 pages

Download or read book Rhythms of the Brain written by G. Buzsáki and published by Oxford University Press. This book was released on 2011 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.