EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary

Download or read book Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary written by Victor Ivrii and published by Springer. This book was released on 2006-11-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: a

Book Analysis as a Tool in Mathematical Physics

Download or read book Analysis as a Tool in Mathematical Physics written by Pavel Kurasov and published by Springer Nature. This book was released on 2020-07-14 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.

Book Functional Calculus of Pseudodifferential Boundary Problems

Download or read book Functional Calculus of Pseudodifferential Boundary Problems written by Gerd Grubb and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.

Book Boundary Value Problems of Mathematical Physics

Download or read book Boundary Value Problems of Mathematical Physics written by O. A. Ladyzhenskaya and published by American Mathematical Soc.. This book was released on 1989 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

Download or read book The Asymptotic Distribution of Eigenvalues of Partial Differential Operators written by Yu Safarov and published by American Mathematical Soc.. This book was released on 1996-12-15 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the subject of extensive research over a century, spectral asymptotics for partial differential operators attracted the attention of many outstanding mathematicians and physicists. This book studies the eigenvalues of elliptic linear boundary value problems and has as its main content a collection of asymptotic formulas describing the distribution of eigenvalues with high sequential numbers. Asymptotic formulas are used to illustrate standards eigenvalue problems of mechanics and mathematical physics. The volume provides a basic introduction to all the necessary mathematical concepts and tools, such as microlocal analysis, billiards, symplectic geometry and Tauberian theorems. It is self-contained and would be suitable as a graduate text.

Book Partial Differential Equations VII

Download or read book Partial Differential Equations VII written by M.A. Shubin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum".

Book Partial Differential Equations II

Download or read book Partial Differential Equations II written by Yu.V. Egorov and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.

Book Functional Calculus of Pseudo Differential Boundary Problems

Download or read book Functional Calculus of Pseudo Differential Boundary Problems written by G. Grubb and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Book Quantized Number Theory  Fractal Strings And The Riemann Hypothesis  From Spectral Operators To Phase Transitions And Universality

Download or read book Quantized Number Theory Fractal Strings And The Riemann Hypothesis From Spectral Operators To Phase Transitions And Universality written by Hafedh Herichi and published by World Scientific. This book was released on 2021-07-27 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Book Horizons of Fractal Geometry and Complex Dimensions

Download or read book Horizons of Fractal Geometry and Complex Dimensions written by Robert G. Niemeyer and published by American Mathematical Soc.. This book was released on 2019-06-26 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).

Book Introduction to the Spectral Theory of Polynomial Operator Pencils

Download or read book Introduction to the Spectral Theory of Polynomial Operator Pencils written by A. S. Markus and published by American Mathematical Soc.. This book was released on 2012-09-14 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigenvectors and associate vectors of a pencil, and on the asymptotic behavior of its eigenvalues and generalizations of these results. The author also presents various theorems on spectral factorization of pencils which grew out of known results of M. G. Krein and Heinz Langer. A large portion of the book involves the theory of selfadjoint pencils, an area having numerous applications. Intended for mathematicians, researchers in mechanics, and theoretical physicists interested in spectral theory and its applications, the book assumes a familiarity with the fundamentals of spectral theory of operators acting in a Hilbert space.

Book Partial Differential Equations IX

Download or read book Partial Differential Equations IX written by M.S. Agranovich and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.

Book Mathematical Methods in Scattering Theory and Biomedical Technology

Download or read book Mathematical Methods in Scattering Theory and Biomedical Technology written by George Dassios and published by CRC Press. This book was released on 1998-06-11 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume address the state-of-the-art and future directions in applied mathematics in both scattering theory and biomedical technology. A workshop held in Metsovo, Greece during the summer of 1997 brought together some of the world's foremose experts in the field with researchers working in Greece. Sixteen of the contributed papers appear in this volume. All the papers give new directions, and in several cases, the most important scientific contributions in the fields.

Book Advances in Harmonic Analysis and Partial Differential Equations

Download or read book Advances in Harmonic Analysis and Partial Differential Equations written by Vladimir Georgiev and published by Springer Nature. This book was released on 2020-11-07 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.

Book Operator Theory

    Book Details:
  • Author : Barry Simon
  • Publisher : American Mathematical Soc.
  • Release : 2015-12-04
  • ISBN : 1470411032
  • Pages : 769 pages

Download or read book Operator Theory written by Barry Simon and published by American Mathematical Soc.. This book was released on 2015-12-04 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel'fand-Naimark theorems and Fourier analysis on general locally compact abelian groups.

Book Partial Differential Equations And Their Applications   Proceedings Of The Conference

Download or read book Partial Differential Equations And Their Applications Proceedings Of The Conference written by Luigi Rodino and published by World Scientific. This book was released on 1999-11-26 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reports the recent progress in linear and nonlinear partial differential equations, microlocal analysis, singular partial differential operators, spectral analysis and hyperfunction theory.

Book Spectral Geometry

    Book Details:
  • Author : Pierre H. Berard
  • Publisher : Springer
  • Release : 2006-11-14
  • ISBN : 3540409580
  • Pages : 284 pages

Download or read book Spectral Geometry written by Pierre H. Berard and published by Springer. This book was released on 2006-11-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: