Download or read book Practical Propensity Score Methods Using R written by Walter Leite and published by SAGE Publications. This book was released on 2016-10-28 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Propensity Score Methods Using R by Walter Leite is a practical book that uses a step-by-step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. With a comparison of both well-established and cutting-edge propensity score methods, the text highlights where solid guidelines exist to support best practices and where there is scarcity of research. Readers will find that this scaffolded approach to R and the book’s free online resources help them apply the text’s concepts to the analysis of their own data.
Download or read book Practical propensity score methods using R written by Walter Leite and published by . This book was released on 2017 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book uses a step--by--step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. With a comparison of both well--established and cutting--edge propensity score methods, the text highlights where solid guidelines exist to support best practices and where there is scarcity of research. Readers will find that this scaffolded approach to R and the book's free online resources help them apply the text's concepts to the analysis of their own data.
Download or read book Propensity Score Analysis written by Shenyang Guo and published by SAGE. This book was released on 2015 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides readers with a systematic review of the origins, history, and statistical foundations of Propensity Score Analysis (PSA) and illustrates how it can be used for solving evaluation and causal-inference problems.
Download or read book Propensity Score Analysis written by Wei Pan and published by Guilford Publications. This book was released on 2015-04-07 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. Data and software code for the examples are available at the companion website (www.guilford.com/pan-materials).
Download or read book Propensity Score Methods and Applications written by Haiyan Bai and published by SAGE Publications. This book was released on 2018-11-20 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, introductory text, Propensity Score Methods and Applications describes propensity score methods (PSM) and how they are used to balance the distributions of observed covariates between treatment conditions as a means to reduce selection bias. This new QASS title specifically focuses on the procedures of implementing PSM for research in social sciences, instead of merely demonstrating the effectiveness of the method. Using succinct and approachable language to introduce the basic concepts of PSM, authors Haiyan Bai and M. H. Clark present basic concepts, assumptions, procedures, available software packages, and step-by-step examples for implementing PSM using real-world data, with exercises at the end of each chapter allowing readers to replicate examples on their own.
Download or read book Using Propensity Scores in Quasi Experimental Designs written by William M. Holmes and published by SAGE Publications. This book was released on 2013-06-10 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using Propensity Scores in Quasi-Experimental Designs, by William M. Holmes, examines how propensity scores can be used to reduce bias with different kinds of quasi-experimental designs and to fix or improve broken experiments. Requiring minimal use of matrix and vector algebra, the book covers the causal assumptions of propensity score estimates and their many uses, linking these uses with analysis appropriate for different designs. Thorough coverage of bias assessment, propensity score estimation, and estimate improvement is provided, along with graphical and statistical methods for this process. Applications are included for analysis of variance and covariance, maximum likelihood and logistic regression, two-stage least squares, generalized linear regression, and general estimation equations. The examples use public data sets that have policy and programmatic relevance across a variety of disciplines.
Download or read book Analysis of Observational Health Care Data Using SAS written by Douglas E. Faries and published by SAS Press. This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.
Download or read book Causality in a Social World written by Guanglei Hong and published by John Wiley & Sons. This book was released on 2015-06-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in the context of each application, the author demonstrates that improved statistical procedures will greatly enhance the empirical study of causal relationship theory. Applications focus on interventions designed to improve outcomes for participants who are embedded in social settings, including families, classrooms, schools, neighbourhoods, and workplaces.
Download or read book Applied Research Design written by Terry Elizabeth Hedrick and published by SAGE Publications. This book was released on 1993-01-11 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The Terry E. Hedrick, Leonard Bickman, and Debra J. Rog text provides a framework for designing research that is adaptable to almost any applied setting and constantly reiterates the need for establishing and maintaining credibility with the client at each level of the research process. Although the applied research book is a practical guide, suitable to accompany any thorough applied design textbook, it does a comprehensive job of presenting the distinction between basic and applied research. It introduces many topics found in the general methodology textbooks. This overlap will help students to feel comfortable in using the general skills in a more specific and complex manner." --Contemporary Psychology "For researchers needing to know how to plan and design applied research projects, Applied Research Design will be a most welcome publication. . . . The writing is clear and concise, graphics are utilized helpfully, and this book will be much appreciated by beginning social scientists who are serious but uncertain about the methodologies possible for doing applied research." --Academic Library Book Review Aimed at helping researchers and students make the transition from the classroom and the laboratory to the "real" world, the authors reveal pitfalls to avoid and strategies to undertake in order to overcome obstacles in the design and planning of applied research. Applied Research Design focuses on refining research questions when actual events force deviations from the original analysis. To accomplish this, the authors discuss how to study and monitor program implementation, statistical power analysis, and how to assess the human and material resources needed to conduct an applied research design to facilitate the management of data collection, analysis, and interpretation. Appropriate for professionals and researchers who have had some previous exposure to research methods, this book will enable the development of research strategies that are credible, useful, and--more important--feasible.
Download or read book Best Practices in Quantitative Methods written by Jason W. Osborne and published by SAGE. This book was released on 2008 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
Download or read book The Oxford Handbook of Quantitative Methods in Psychology Vol 1 written by Todd D. Little and published by Oxford University Press. This book was released on 2013-03-21 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oxford Handbook of Quantitative Methods in Psychology provides an accessible and comprehensive review of the current state-of-the-science and a one-stop source for learning and reviewing current best-practices in a quantitative methods across the social, behavioral, and educational sciences.
Download or read book Matched Sampling for Causal Effects written by Donald B. Rubin and published by Cambridge University Press. This book was released on 2006-09-04 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.
Download or read book R for Political Data Science written by Francisco Urdinez and published by CRC Press. This book was released on 2020-11-18 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.
Download or read book Evidence Based Public Health Practice written by Arlene Fink and published by SAGE. This book was released on 2013 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for students and practitioners, this practical book shows how to do evidence-based research in public health. As a great deal of evidence-based practice occurs online, it focuses on how to find, use, and interpret online sources of public health information. It also includes examples of community-based participatory research and shows how to link data with community preferences and needs.
Download or read book Modern Analysis of Customer Surveys written by Ron S. Kenett and published by John Wiley & Sons. This book was released on 2012-01-30 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey data. Presents a general introduction to customer surveys, within an organization’s business cycle. Contains classical techniques with modern and non standard tools. Focuses on probabilistic techniques from the area of statistics/data analysis and covers all major recent developments. Accompanied by a supporting website containing datasets and R scripts. Customer survey specialists, quality managers and market researchers will benefit from this book as well as specialists in marketing, data mining and business intelligence fields.
Download or read book Developing a Protocol for Observational Comparative Effectiveness Research A User s Guide written by Agency for Health Care Research and Quality (U.S.) and published by Government Printing Office. This book was released on 2013-02-21 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Download or read book Causal Inference written by Scott Cunningham and published by Yale University Press. This book was released on 2021-01-26 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.