EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Power Semiconductors

    Book Details:
  • Author : Stefan Linder
  • Publisher : CRC Press
  • Release : 2006-06-02
  • ISBN : 1482293005
  • Pages : 278 pages

Download or read book Power Semiconductors written by Stefan Linder and published by CRC Press. This book was released on 2006-06-02 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explaining the physics and characteristics of power semiconductor devices, this book presents an overview of various classes of power semiconductors. It provides insight into how they work and the characteristics of the various components from the viewpoint of the user, going through all modern power semiconductor device types. The physics are expl

Book Fundamentals of Power Semiconductor Devices

Download or read book Fundamentals of Power Semiconductor Devices written by B. Jayant Baliga and published by Springer. This book was released on 2018-09-28 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Book Power Semiconductors

Download or read book Power Semiconductors written by Stefan Linder and published by EPFL Press. This book was released on 2006-06-02 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide an overview of the various types of power semiconductor devices, to give an insight into how they function, and to explain and analyze the characteristics of the various components. All the important classes of power semiconductors are covered. Of particular interest, the author takes into account the role of plasma formation in the operation of highpower semiconductor devices.

Book Power Semiconductor Devices

Download or read book Power Semiconductor Devices written by B. Jayant Baliga and published by Brooks/Cole. This book was released on 1996 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Application Manual Power Semiconductors

Download or read book Application Manual Power Semiconductors written by Ulrich Nicolai and published by . This book was released on 2011 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Power Devices

Download or read book Semiconductor Power Devices written by Josef Lutz and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses semiconductor properties, pn-junctions and the physical phenomena for understanding power devices in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. Special peculiarities of devices from the ascending semiconductor materials SiC and GaN are discussed. This book presents significant improvements compared to its first edition. It includes chapters on packaging and reliability. The chapter on semiconductor technology is written in a more in-depth way by considering 2D- and high concentration effects. The chapter on IGBTs is extended by new technologies and evaluation of its potential. An extended theory of cosmic ray failures is presented. The range of certain important physical relationships, doubted in recent papers for use in device simulation, is cleared and substantiated in this second edition.

Book Investigation of Reliability Aspects of Power Semiconductors in Photovoltaic Central Inverters for Sunbelt Regions

Download or read book Investigation of Reliability Aspects of Power Semiconductors in Photovoltaic Central Inverters for Sunbelt Regions written by Christian Felgemacher and published by kassel university press GmbH. This book was released on 2018-03-23 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: High reliability and system lifetimes in the range of 30 years are essential for renewable energy systems such as photovoltaic power plants to minimise costs for the generated electric energy. At the same time such systems are used in regions with high solar irradiance and also harsh environmental conditions. Therefore, designs for photovoltaic inverters need to meet not only the key design criteria of high conversion efficiency but also need to be very robust and at the same time meet challenging cost targets. In this dissertation aspects concerning the lifetime and reliability of power semiconductors in photovoltaic central inverters are investigated. On key topic of the dissertation is the measurement of the voltage dependent failure rate due to cosmic radiation induced single-event-burnout of SiC and Si power semiconductors. The second topic is the development of a system level simulation to quantify the stress on the power semiconductors in a PV central inverters in various regions of the world. Further topics are the investigation of improved control concepts for the cooling system of PV central inverters and the monitoring of IGBT temperatures during converter operation.

Book Power Integrity Modeling and Design for Semiconductors and Systems

Download or read book Power Integrity Modeling and Design for Semiconductors and Systems written by Madhavan Swaminathan and published by Pearson Education. This book was released on 2007-11-19 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: The First Comprehensive, Example-Rich Guide to Power Integrity Modeling Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications. The authors Introduce power delivery network components, analysis, high-frequency measurement, and modeling requirements Thoroughly explain modeling of power/ground planes, including plane behavior, lumped modeling, distributed circuit-based approaches, and much more Offer in-depth coverage of simultaneous switching noise, including modeling for return currents using time- and frequency-domain analysis Introduce several leading time-domain simulation methods, such as macromodeling, and discuss their advantages and disadvantages Present the application of the modeling methods on several advanced case studies that include high-speed servers, high-speed differential signaling, chip package analysis, materials characterization, embedded decoupling capacitors, and electromagnetic bandgap structures This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.

Book Fundamentals of Power Semiconductor Devices

Download or read book Fundamentals of Power Semiconductor Devices written by B. Jayant Baliga and published by Springer Science & Business Media. This book was released on 2010-04-02 with total page 1085 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Book Wide Bandgap Power Semiconductor Packaging

Download or read book Wide Bandgap Power Semiconductor Packaging written by Katsuaki Suganuma and published by Woodhead Publishing. This book was released on 2018-05-28 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Power Semiconductor Packaging: Materials, Components, and Reliability addresses the key challenges that WBG power semiconductors face during integration, including heat resistance, heat dissipation and thermal stress, noise reduction at high frequency and discrete components, and challenges in interfacing, metallization, plating, bonding and wiring. Experts on the topic present the latest research on materials, components and methods of reliability and evaluation for WBG power semiconductors and suggest solutions to pave the way for integration. As wide bandgap (WBG) power semiconductors, SiC and GaN, are the latest promising electric conversion devices because of their excellent features, such as high breakdown voltage, high frequency capability, and high heat-resistance beyond 200 C, this book is a timely resource on the topic. - Examines the key challenges of wide bandgap power semiconductor packaging at various levels, including materials, components and device performance - Provides the latest research on potential solutions, with an eye towards the end goal of system integration - Discusses key problems, such as thermal management, noise reduction, challenges in interconnects and substrates

Book Power Electronics Semiconductor Devices

Download or read book Power Electronics Semiconductor Devices written by Robert Perret and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration.

Book Power Electronics Device Applications of Diamond Semiconductors

Download or read book Power Electronics Device Applications of Diamond Semiconductors written by Satoshi Koizumi and published by Woodhead Publishing. This book was released on 2018-06-29 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. - Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance - Examines why diamond semiconductors could lead to superior power electronics - Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics

Book Discrete and Integrated Power Semiconductor Devices

Download or read book Discrete and Integrated Power Semiconductor Devices written by Vítezslav Benda and published by John Wiley & Sons. This book was released on 1999-01-26 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses Buch beschreibt in leicht verständlicher Weise Aufbau, Funktion, Eigenschaften und Anwendungsmöglichkeiten wichtiger Halbleiter-Bauelemente - von Leistungsdioden über Thyristoren und MOSFETs bis hin zu integrierten Systemen. Die Autoren verzichten dabei auf komplizierte Mathematik; sie stützen sich vielmehr auf grundlegende physikalische Modelle. (11/98)

Book Wide Bandgap Semiconductor Power Devices

Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Book Power Semiconductors

Download or read book Power Semiconductors written by M. Kubat and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a summary of our knowledge of power semiconductor structures. It presents first a short historic introduction (Chap. I) as well as a brief selection of facts from solid state physics, in particular those related to power semiconductors (Chap. 2). The book deals with diode structures in Chap. 3. In addition to fundamental facts in pn-junction theory, the book covers mainly the important processes of power structures. It describes the emitter efficiency and function of microleaks (shunts). the p +p and n + n junctions, and in particular the recent theory of the pin, pvn and p1tn junctions, whose role appears to be decisive for the forward mode not only of diode structures but also of more complex ones. For power diode structures the reverse mode is the decisive factor in pn-junction breakdown theory. The presentation given here uses engineering features (the multiplication factor M and the experimentally detected laws for the volume and surface of crystals), which condenses the presentation and makes the mathematical apparatus simpler. The discussion of diode structures is complemented by data on the tunnel phenomenon as well as on the properties of the semiconductor metal contact which forms the outer layers of the diode or more complex structure. A separate chapter (Chap. 4) is devoted to the two-transistor equivalent of the four layer structure and the solution of the four-layer structure in various modes. This presentation is also directed mainly towards the power aspect and the new components.

Book Semiconductor Power Devices

Download or read book Semiconductor Power Devices written by Josef Lutz and published by Springer. This book was released on 2018-02-16 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: Halbleiter-Leistungsbauelemente sind das Kernstück der Leistungselektronik. Sie bestimmen die Leistungsfähigkeit und machen neuartige und verlustarme Schaltungen erst möglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie über einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstörungsmechanismen und Störungseffekten. Die 2., überarbeitete Auflage berücksichtigt technische Neuerungen und Entwicklungen.

Book Modeling Bipolar Power Semiconductor Devices

Download or read book Modeling Bipolar Power Semiconductor Devices written by Tanya K. Gachovska and published by Morgan & Claypool Publishers. This book was released on 2013-03 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents physics-based models of bipolar power semiconductor devices and their implementation in MATLAB and Simulink. The devices are subdivided into different regions, and the operation in each region, along with the interactions at the interfaces which are analyzed using basic semiconductor physics equations that govern their behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as the junction voltages and the carrier distribution in different regions of the device, can be obtained using the models.