EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Power Conversion and Control of Wind Energy Systems

Download or read book Power Conversion and Control of Wind Energy Systems written by Bin Wu and published by John Wiley & Sons. This book was released on 2011-08-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.

Book Power Conversion and Control of Wind Energy Systems

Download or read book Power Conversion and Control of Wind Energy Systems written by Bin Wu and published by John Wiley & Sons. This book was released on 2011-09-26 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.

Book Model Predictive Control of Wind Energy Conversion Systems

Download or read book Model Predictive Control of Wind Energy Conversion Systems written by Venkata Yaramasu and published by John Wiley & Sons. This book was released on 2016-12-19 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Book Wind Energy Conversion Systems

Download or read book Wind Energy Conversion Systems written by S.M. Muyeen and published by Springer Science & Business Media. This book was released on 2012-01-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exploration of the technical progress of wind energy conversion systems also examines potential future trends and includes recently developed systems such as those for multi-converter operation of variable-speed wind generators and lightning protection.

Book Improved Indirect Power Control  IDPC  of Wind Energy Conversion Systems  WECS

Download or read book Improved Indirect Power Control IDPC of Wind Energy Conversion Systems WECS written by Fayssal Amrane and published by Bentham Science Publishers. This book was released on 2019-07-26 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind power capacity in the world has been increased by more than 30% over the last decade in countries which have prominent installations. Wind energy conversion systems (WECSs) based on the doubly-fed induction generator (DFIG) have dominated the wind power generation sector due to the outstanding advantages they provide, including small converter ratings (around 30% of the generator rating) and lower converter costs. Due to the non-linearity of wind power systems, the DFIG power control setup presents a big challenge especially under conditions of high variance in wind-speed and parameter sensing. To overcome these major problems, an improved IDPC (Indirect Power Control) system based on PID (Proportional-Integral-Derivative) controller, has been proposed instead of the conventional power inverters. This handbook covers information about IDPC based WECS. The book starts with a general introduction to wind power system basics. Subsequent chapters provide additional knowledge about robustness tests and adaptive / intelligent control systems employed in wind energy systems. The new concept of direct and quadrature current control (Ird & Irq) under MPPT (Maximum Power Point Tracking) strategy is also explained along with novel fuzzy logic type control systems. The authors have included detailed diagrams and an appendix of WECS parameters, making this handbook a useful primer for engineering students working towards completing licenses, Masters degrees and Post-graduation programs in advanced wind power energy systems.

Book Control and Operation of Grid Connected Wind Energy Systems

Download or read book Control and Operation of Grid Connected Wind Energy Systems written by Ali M. Eltamaly and published by Springer Nature. This book was released on 2021-03-04 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book analyses and discusses the current issues of integration of wind energy systems in the power systems. It collects recent studies in the area, focusing on numerous issues including unbalanced grid voltages, low-voltage ride-through and voltage stability of the grid. It also explores the impact of the emerging technologies of wind turbines and power converters in the integration of wind power systems in power systems. This book utilizes the editors’ expertise in the energy sector to provide a comprehensive text that will be of interest to researchers, graduate students and industry professionals.

Book Wind Energy Systems

Download or read book Wind Energy Systems written by Mario Garcia-Sanz and published by CRC Press. This book was released on 2012-02-02 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the latest developments in the field, Wind Energy Systems: Control Engineering Design offers a novel take on advanced control engineering design techniques for wind turbine applications. The book introduces concurrent quantitative engineering techniques for the design of highly efficient and reliable controllers, which can be used to solve the most critical problems of multi-megawatt wind energy systems. This book is based on the authors’ experience during the last two decades designing commercial multi-megawatt wind turbines and control systems for industry leaders, including NASA and the European Space Agency. This work is their response to the urgent need for a truly reliable concurrent engineering methodology for the design of advanced control systems. Outlining a roadmap for such a coordinated architecture, the authors consider the links between all aspects of a multi-megawatt wind energy project, in which the wind turbine and the control system must be cooperatively designed to achieve an optimized, reliable, and successful system. Look inside for links to a free download of QFTCT—a new interactive CAD tool for QFT controller design with MATLAB® that the authors developed with the European Space Agency. The textbook’s big-picture insights can help students and practicing engineers control and optimize a wind energy system, in which large, flexible, aerodynamic structures are connected to a demanding variable electrical grid and work automatically under very turbulent and unpredictable environmental conditions. The book covers topics including robust QFT control, aerodynamics, mechanical and electrical dynamic modeling, economics, reliability, and efficiency. It also addresses standards, certification, implementation, grid integration, and power quality, as well as environmental and maintenance issues. To reinforce understanding, the authors present real examples of experimentation with commercial multi-megawatt direct-drive wind turbines, as well as on-shore, offshore, floating, and airborne wind turbine applications. They also offer a unique in-depth exploration of the quantitative feedback theory (QFT)—a proven, successful robust control technique for real-world applications—as well as advanced switching control techniques that help engineers exceed classical linear limitations.

Book Power Electronics for Solar and Wind Energy Conversion Systems

Download or read book Power Electronics for Solar and Wind Energy Conversion Systems written by Felix Rojas Lobos and published by Academic Press. This book was released on 2022-09-15 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronics enable technology for future electrical networks by allowing integration and control of different energy sources, such as solar and wind energy, electric vehicles and battery/storage systems, in an efficient and reliable manner. Power Electronics for Renewable Energy Conversion is a comprehensive compilation of hot and important developments from a holistic view point considering power electronics, machines, control and mechanical systems. The study of power electronics and its integration in different applications is covered and through tutorials, exercises and simulation examples identifies real time solution based models on the proposed converter and controller designs for renewable energy sources. A comprehensive chapter is devoted to explaining controller design for power electronics systems and power converters design, providing engineers and researchers in all areas of power and renewable engineering the advanced knowledge needed for power electronics of renewable energy systems all in one place. Presents a compilation of all important topics for understanding wind and solar energy conversion Provides support slides for course use and research learning Includes step-by-step examples, simulations and exercises that will help the reader apply their advanced knowledge

Book Power Electronics for Renewable Energy Systems  Transportation and Industrial Applications

Download or read book Power Electronics for Renewable Energy Systems Transportation and Industrial Applications written by Haitham Abu-Rub and published by John Wiley & Sons. This book was released on 2014-06-02 with total page 1080 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book

Book Wind Power in Power Systems

Download or read book Wind Power in Power Systems written by Thomas Ackermann and published by John Wiley & Sons. This book was released on 2012-04-23 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.

Book Optimal Control of Wind Energy Systems

Download or read book Optimal Control of Wind Energy Systems written by Iulian Munteanu and published by Springer Science & Business Media. This book was released on 2008-02-05 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.

Book Integration of Renewable Energy Sources with Smart Grid

Download or read book Integration of Renewable Energy Sources with Smart Grid written by M. Kathiresh and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTEGRATION OF RENEWABLE ENERGY SOURCES WITH SMART GRID Provides comprehensive coverage of renewable energy and its integration with smart grid technologies. This book starts with an overview of renewable energy technologies, smart grid technologies, and energy storage systems and covers the details of renewable energy integration with smart grid and the corresponding controls. It also provides an enhanced perspective on the power scenario in developing countries. The requirement of the integration of smart grid along with the energy storage systems is deeply discussed to acknowledge the importance of sustainable development of a smart city. The methodologies are made quite possible with highly efficient power convertor topologies and intelligent control schemes. These control schemes are capable of providing better control with the help of machine intelligence techniques and artificial intelligence. The book also addresses modern power convertor topologies and the corresponding control schemes for renewable energy integration with smart grid. The design and analysis of power converters that are used for the grid integration of solar PV along with simulation and experimental results are illustrated. The protection aspects of the microgrid with power electronic configurations for wind energy systems are elucidated. The book also discusses the challenges and mitigation measure in renewable energy integration with smart grid. Audience The core audience is hardware and software engineers working on renewable energy integration related projects, microgrids, smart grids and computing algorithms for converter and inverter circuits. Researchers and students in electrical, electronics and computer engineering will also benefit reading the book.

Book Advanced Multilevel Converters and Applications in Grid Integration

Download or read book Advanced Multilevel Converters and Applications in Grid Integration written by Ali Iftekhar Maswood and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the core principles of advanced multilevel converters, which require fewer components and provide higher power conversion efficiency and output power quality. The authors – noted experts in the field – explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations Provides a valid reference for further developments in the multilevel converters design issue Contains simulations files for further study Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.

Book Grid Integration and Dynamic Impact of Wind Energy

Download or read book Grid Integration and Dynamic Impact of Wind Energy written by Vijay Vittal and published by Springer Science & Business Media. This book was released on 2012-07-23 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grid Integration and Dynamic Impact of Wind Energy details the integration of wind energy resources to the electric grid worldwide. Authors Vijay Vittal and Raja Ayyanar include detailed coverage of the power converters and control used in interfacing electric machines and power converters used in wind generators, and extensive descriptions of power systems operation and control to accommodate large penetration of wind resources. Key concepts will be illustrated through extensive power electronics and power systems simulations using software like MATLAB, Simulink and PLECS. The book addresses real world problems and solutions in the area of grid integration of wind resources, and will be a valuable resource for engineers and researchers working in renewable energy and power.

Book Grid Integration of Wind Energy

Download or read book Grid Integration of Wind Energy written by Siegfried Heier and published by John Wiley & Sons. This book was released on 2014-04-21 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This popular reference describes the integration of wind-generated power into electrical power systems and, with the use of advanced control systems, illustrates how wind farms can be made to operate like conventional power plants. Fully revised, the third edition provides up-to-date coverage on new generator developments for wind turbines, recent technical developments in electrical power conversion systems, control design and essential operating conditions. With expanded coverage of offshore technologies, this edition looks at the characteristics and static and dynamic behaviour of offshore wind farms and their connection to the mainland grid. Brand new material includes: comprehensive treatment of onshore and offshore grid integration updated legislative guidelines for the design, construction and installation of wind power plants the fundamental characteristics and theoretical tools of electrical and mechanical components and their interactions new and future types of generators, converters, power electronics and controller designs improved use of grid capacities and grid support for fixed- and variable-speed controlled wind power plants options for grid control and power reserve provision in wind power plants and wind farms This resource is an excellent guide for researchers and practitioners involved in the planning, installation and grid integration of wind turbines and power plants. It is also highly beneficial to university students studying wind power technology, renewable energy and power systems, and to practitioners in wind engineering, turbine design and manufacture and electrical power engineering.

Book Emerging Power Converters for Renewable Energy and Electric Vehicles

Download or read book Emerging Power Converters for Renewable Energy and Electric Vehicles written by Md. Rabiul Islam and published by CRC Press. This book was released on 2021-05-30 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

Book Airborne Wind Energy

Download or read book Airborne Wind Energy written by Roland Schmehl and published by Springer. This book was released on 2018-03-31 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.