EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River  2002 Technical Report

Download or read book Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River 2002 Technical Report written by and published by . This book was released on 2003 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.

Book Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River  2002

Download or read book Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River 2002 written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.

Book Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations   FY 2002 Annual Report

Download or read book Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations FY 2002 Annual Report written by and published by . This book was released on 2003 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adult and juvenile chum salmon were monitored from October 2001 through September 2002 to evaluate factors limiting production. In 2001, 6 and 69 adult chum salmon were captured in the Hardy Creek and Hamilton Springs weirs, respectively. In 2001, 285 and 328 chum salmon carcasses were recovered during spawning ground surveys in Hardy Creek and Hamilton Springs, respectively. Twenty-eight fish captured in the mainstem Columbia River, Hamilton Springs, and Hardy Creek were implanted with radio tags and tracked via an array of fixed aerial, underwater antennas and a mobile tracking unit. Using the Area-Under-the-Curve program population estimates of adult chum salmon were 835 in Hardy Creek and 617 in Hamilton Springs. Juvenile chum salmon migration was monitored from March-June 2002. Total catches for Hardy Creek and Hamilton Springs were 103,315 and 140,220, respectively. Estimates of juvenile chum salmon emigration were 450,195 ("21,793) in Hardy Creek and 561,462 ("21,423) in Hamilton Springs.

Book Evaluation of Salmon Spawning Below Bonneville Dam  2005 2006 Annual Report

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam 2005 2006 Annual Report written by and published by . This book was released on 2007 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.

Book Evaluation of Salmon Spawning Below the Four Lowermost Columbia River Dams  2004 2005 Annual Report

Download or read book Evaluation of Salmon Spawning Below the Four Lowermost Columbia River Dams 2004 2005 Annual Report written by and published by . This book was released on 2006 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to join the study in FY 2000, during which its initial efforts were focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas and (2) locating and mapping deepwater fall Chinook salmon spawning areas. In FY 2001, an additional task was added to provide support to the WDFW for analysis of juvenile salmon stranding data. The work PNNL has conducted since then continues to address these same three issues. The overall project is subdivided into a series of tasks, with each agency taking the lead on a task; WDFW leads the adult task, ODFW leads the juvenile task, and the USFWS leads the habitat task. All three tasks are designed to complement each other to achieve the overall project goal. Study results from PNNL's work contribute to all three tasks. This report documents the studies and tasks performed by PNNL during FY 2005. Chapter 1 provides a description of the deepwater redd searches conducted adjacent to Pierce and Ives islands and documents the search results and analysis of findings. Chapter 2 documents the collection of data on riverbed and river temperatures, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates. Technical assistance provided to the WDFW in evaluation of stranding data is summarized in Chapter 3.

Book Evaluation of Salmon Spawning Below Bonneville Dam  Annual Report October 2005   September 2006

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2005 September 2006 written by and published by . This book was released on 2007 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.

Book Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations

Download or read book Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations written by and published by . This book was released on 2001 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Juvenile and adult chum salmon were monitored in fiscal year 2001 to continue evaluating factors limiting production. Total adult salmon caught (in weirs or by carcass surveys) in Hardy Creek and Hamilton Springs in 2000 was 25 and 130 fish, respectively. Fifty-two fish captured in the main stem Columbia River, Hamilton Springs, Hardy Creek, or Bonneville Dam were implanted with radio tags and tracked with an array of fixed aerials and underwater antennae. Males tended to move greater distances than females. Population estimates in Hardy Creek and Hamilton Springs were 37"2 and 157"5, respectively. Chum smolt emigration began in Hamilton Springs 25 February 2001 and 2 March 2001 in Hardy Creek. Total catches in Hardy Creek and Hamilton Springs were 2,955 and 14,967, respectively. Population abundance estimates were 11,586"1,836 in Hardy Creek and 84,520"9,283 in Hamilton Springs.

Book Re introduction of Lower Columbia River Chum Salmon Into Duncan Creek

Download or read book Re introduction of Lower Columbia River Chum Salmon Into Duncan Creek written by Todd Hillson and published by . This book was released on 2002 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lower Columbia River Juvenile Chum Salmon Monitoring

Download or read book Lower Columbia River Juvenile Chum Salmon Monitoring written by and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past 5 to 15 years, WDFW has operated juvenile monitoring traps at five separate locations: Grays River mainstem, Crazy Johnson Creek (Grays River basin), Duncan Creek spawning channel, Hamilton Creek mainstem, and Hamilton Springs spawning channel (Hamilton Creek basin). Juvenile data were collected with either a rotary screw trap (RST) or fence-panel weir. Trap sites were generally operated from late-winter and early-spring (February to March) through late spring to mid-summer (May to August). Although a portion of the collected data have previously been analyzed (i.e., chum salmon fry abundances from Duncan Creek and Hamilton Springs spawning channels), the majority had not. Therefore, the purpose of this report was to summarize the juvenile chum salmon monitoring activities in lower Columbia River since 2002, with specific focus on the generation of annual abundance estimates of juvenile outmigrants. While the emphasis of the juvenile monitoring outlined in this report was to generate unbiased and precise outmigrant estimates for chum salmon, data were collected on all species encountered. Thus, when data were available, outmigrant estimates were generated for other species, including Chinook salmon (O. tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Abundance estimates were stratified by site, year, species, origin (natural and hatchery), life-stage (fry, parr, and transitional/smolt), and age-class (sub yearling and yearling). Across all five monitoring sites, we monitored a total of 35 outmigrant years and generated a total of 117 outmigrant abundance estimates and their associated levels of precision.

Book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville  the Dalles  John Day and McNary Dams

Download or read book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville the Dalles John Day and McNary Dams written by Wayne D. van der Naald and published by . This book was released on 2003 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam  Columbia River

Download or read book Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam Columbia River written by and published by . This book was released on 2008 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific riverbed elevation and providing minimum spawning flows that have the greatest chance of being maintained through egg incubation and fry emergence. However, managing the lower Columbia River for a stable tailwater elevation does not provide much operational flexibility at Bonneville Dam, which has little storage capacity. When river discharges increase due to rain events, the traditional approach has been to pass excess water at night to maintain stable tailwater elevations during the daytime. The underlying assumption of this strategy, referred to as reverse load following, is that fish do not spawn at night. However, Tiffan et al. (2005) showed that this assumption is false by documenting nighttime spawning by chum salmon in the Ives Island area. Similarly, McMichael et al. (2005) reported nighttime spawning by Chinook salmon (O. tshawytscha) in the Columbia River, indicating that diel spawning may be a common occurrence in Pacific salmon. During the latter portion of the chum spawning period in December 2003 and 2004, discharges from Bonneville Dam increased from an average of 3,398 m3/s (tailwater elevation (almost equal to) 3.5 m above mean sea level) during the day to over 5,664 m3/s (tailwater elevation (almost equal to) 5.1 m) at night, with peak discharges of 7,080 m3/s (tailwater elevation (almost equal to) 6.1 m). This caused concern among fishery managers regarding the potential effects of these high discharges on this population of spawning chum salmon, which is listed under the Endangered Species Act (National Oceanic and Atmospheric Administration 1999). We hypothesized that increased water velocities associated with elevated tailwaters might alter chum salmon spawning behavior if water velocities at redd locations increased beyond the range of suitability (>0.8 m/s; Salo 1991). In 2005, we investigated the movement and behavioral responses of spawning chum salmon at Ives Island to increased tailwater elevations at Bonneville Dam. We used acoustic telemetry to determine if the higher velocities associated with increased tailwater elevations caused fish to leave their redds. We related the duration fish were away from redds and the distances moved to water velocities estimated from a two-dimensional hydrodynamic model. Finally, we described specific changes in spawning behavior (e.g., nest digging; swimming activity) during elevated-tailwater tests using a dual-frequency identification sonar (DIDSON).

Book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville Dam

Download or read book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville Dam written by Wayne D. van der Naald and published by . This book was released on 2003 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Re Introduction of Lower Columbia River Chum Salmon Into Duncan Creek  2001 2002 Annual Report

Download or read book Re Introduction of Lower Columbia River Chum Salmon Into Duncan Creek 2001 2002 Annual Report written by and published by . This book was released on 2002 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River basin. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high quality spawning and incubation areas and (2) to simultaneously evaluate natural re-colonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. The eggs from these artificial crossings are then either incubated at Duncan Creek or incubated and the fry reared at the hatchery to be released back into Duncan Creek. Tasks associated with the first goal include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to these channels to stabilize the banks, trap silt and provide shade; (4) annual sampling of gravel in the spawning channels to detect changes in gravel composition and sedimentation levels.

Book Identification and Assessment of Fall Chinook Salmon  oncorhynchus Tshawytscha  Spawning Below the Dalles  John Day and McNary Dams

Download or read book Identification and Assessment of Fall Chinook Salmon oncorhynchus Tshawytscha Spawning Below the Dalles John Day and McNary Dams written by and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes research conducted from 2001 to 2006 to investigate use of the mainstem Columbia River below The Dalles, John Day and McNary dams by spawning fall Chinook salmon through deep water redd surveys. Initial reconnaissance level surveys conducted in 2001 documented salmon redds below John Day Dam. No redds were observed below The Dalles or McNary dams and researchers concluded that spawning habitat conditions below The Dalles were not conducive to spawning, however, conditions appeared to be well suited below McNary Dam. Comprehensive redd surveys were subsequently conducted below John Day Dam from 2002 to 2006. However, 2006 surveys were incomplete because of high turbidities. No surveys were conducted below the other dams in any other years, but researchers recommended additional surveys below McNary Dam. Redd surveys documented a low of 96 redds in 2002 and a high of 183 in 2004. Expanded estimates for a total redd population below John Day Dam ranged from 880 to 1,597 redds for the same years. A run reconstruction exercise was conducted for the John Day Dam tailrace, to determine what the adult escapement may have been with index escapement estimates ranging from 20,362 (2005) to 57,823 (2003) adult fall Chinook salmon for the comprehensively sampled period (2002 – 2005).

Book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006   September 2007

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 September 2007 written by and published by . This book was released on 2008 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering.

Book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville  The Dalles  John Day  and McNary Dams   2000 2001 Annual Report

Download or read book Evaluation of Fall Chinook and Chum Salmon Spawning Below Bonneville The Dalles John Day and McNary Dams 2000 2001 Annual Report written by and published by . This book was released on 2002 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 2000 to 30 September 2001. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations. (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6; (9) Documentation of entrapment in low-lying areas of juvenile fall chinook and chum rearing in the area described in Task 6; and (10) Investigation of feasibility of determining juvenile to adult survival rate from coded-wire tagged juvenile fall chinook captured and tagged in the area described in Task 6.

Book Summary of Temperature Data Collected to Improve Emergence Timing Estimates for Chum and Fall Chinook Salmon in the Lower Columbia River

Download or read book Summary of Temperature Data Collected to Improve Emergence Timing Estimates for Chum and Fall Chinook Salmon in the Lower Columbia River written by and published by . This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: From 1999 through 2004, Pacific Northwest National Laboratory collected temperature data from within chum and fall Chinook salmon spawning gravels and the overlying river at 21 locations in the Ives Island area approximately 5 km downstream from Bonneville Dam. Sample locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. The study objectives were to 1) collect riverbed and river temperature data each year from the onset of spawning (October) to the end of emergence (June) and 2) provide those data in-season to fisheries management agencies to assist with fall Chinook and chum salmon emergence timing estimates.