EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plastic Analysis and Design of Plates  Shells and Disks

Download or read book Plastic Analysis and Design of Plates Shells and Disks written by M. A. Save and published by . This book was released on 1972 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plastic Limit Analysis of Plates  Shells and Disks

Download or read book Plastic Limit Analysis of Plates Shells and Disks written by M.A. Save and published by Elsevier. This book was released on 1997-12-18 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and updated edition of a book first published in 1972 has kept the general features of the first edition but as could be expected after two decades there are also substantial differences. For instance optimal design has been completely deleted as the developments in this field have been so great that it warrants a book in itself. The fundamental concepts based on Drucker's postulate rather than those of Prager's assumptions function have been introduced. Problems of cyclic loading have been given some more extensive treatment, both in the general theory and in applications. General indications and references have been added for reinforced concrete plates and shells. A general presentation of the yield condition for both plates and shells has been included and the section on the influence of axial force in plates has been almost re-written. Finally, a chapter has been added exclusively devoted to the numerical approach to limit load and shake-down load evaluation. Like the previous edition the book is directed towards engineering applications. The theory is rigorously developed and is therefore of great use to engineering students in plastic limit analysis. Furthermore, applications to metal and reinforced concrete plates and shells and to metal disks are treated by both analytical and numerical approaches.

Book Plastic Analysis and Design of Plates  Shells and Disks

Download or read book Plastic Analysis and Design of Plates Shells and Disks written by M. A. Save and published by North-Holland. This book was released on 1972 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structural Plasticity

Download or read book Structural Plasticity written by Mao-Hong Yu and published by Springer Science & Business Media. This book was released on 2009-11-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Limit and shakedown analysis for structures can provide a very useful tool for design and analysis of engineering structures. "Structural Plasticity - Limit, Shakedown and Dynamic Plastic Analyses of Structure" provides more general solutions of limit and shakedown analysis for structures by using a unified strength theory. A series of solutions of plates from circular, annular plates to rhombus plates and square plates, rotating discs and cylinders, pressure vessels are presented. These results encompass the Tresca-Mohr-Coulomb solution of structure as special cases. The unified solution, which cannot be obtained by using a single criterion, is suitable to more materials and structures. Maohong Yu is professor of Department of Civil Engineering at Xi'an Jiaotong University, China. He has authored 12 books including "Unified Strength Theory and Its Applications" and "Generalized Plasticity".

Book Plates  Laminates And Shells  Asymptotic Analysis And Homogenization

Download or read book Plates Laminates And Shells Asymptotic Analysis And Homogenization written by Tomasz Lewinski and published by World Scientific. This book was released on 2000-03-23 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic and comprehensive presentation of the results concerning effective behavior of elastic and plastic plates with periodic or quasiperiodic structure. One of the chapters covers the hitherto available results concerning the averaging problems in the linear and nonlinear shell models.A unified approach to the problems studied is based on modern variational and asymptotic methods, including the methods of variational inequalities as well as homogenization techniques. Duality arguments are also exploited. A significant part of the book deals with problems important for engineering practice, such as: statical analysis of highly nonhomogeneous plates and shells for which common discretization techniques fail to be efficient, assessing stiffness reduction of cracked [00n/900m]s laminates, and assessing ultimate loads for perfectly plastic plates and shells composed of repeated segments. When possible, the homogenization formulas are cast in closed form expressions. The formulas presented in this manner are then used in constructing regularized formulations of the fundamental optimization problems for plates and shells, since the regularization concepts are based on introducing the composite regions for which microstructural properties play the role of new design variables.

Book Basic Principles of Plate Theory

Download or read book Basic Principles of Plate Theory written by P. G. Lowe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adding another volume, even if only a slim one, to the technical books already published requires some justification. Mine is, firstly, that plate theory is not well represented in the available elementary texts, and secondly that no existing text adequately covers modern applications. The present account is intended to be elementary (though this is a relative term) while still providing stimulation and worthwhile experience for the reader. Special features of interest will I hope be the treatment of geometry of surfaces and the attempts around the end of the work to speculate a little. The detailed treatment of geometry of surfaces has been placed in an appendix where it can readily be referred to by the reader. My interest in plate theory extends back many years to the energetic and stimulating discussions with my supervisor, Professor R. W. Tiffen, at Birkbeck College, London, and a debt to him remains. Interest was rekindled for me by Dr R. E. Melchers when I supervised him in Cambridge some ten years ago, and more recently my stay at Strathclyde University and encouragement and stimulation in the Civil Engineering Department led me to undertake the present work. The typescript was prepared by Ms Catherine Drummond and I thank her warmly for this and other assistance, always cheerfully offered. My thanks also to the publishers and the referees for useful comments and advice. P.G.L.

Book Theories and Applications of Plate Analysis

Download or read book Theories and Applications of Plate Analysis written by Rudolph Szilard and published by John Wiley & Sons. This book was released on 2004-01-02 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book by a renowned structural engineer offers comprehensive coverage of both static and dynamic analysis of plate behavior, including classical, numerical, and engineering solutions. It contains more than 100 worked examples showing step by step how the various types of analysis are performed.

Book Dynamic Models for Structural Plasticity

Download or read book Dynamic Models for Structural Plasticity written by William J. Stronge and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our topic is irreversible or plastic deformation of structural elements composed of relatively thin ductile materials. These deformations are commonly used in sheet metal forming operations to produce lightweight parts of any particular shape. In another context, this type of plastic deformation is described as impact damage in the case of structural components involved in collision. Here we are concerned with mechanics of both static and dynamic deformation processes. The purpose is to use typical material properties and structural characteristics to calculate the deformation for certain types of load; in particular to find the final deflection and shape of the deformed structure and to illustrate how the development of this final shape depends on the constitutive model used to represent the material behavior. The major issue to be addressed is which structural and constitutive properties are important for calculating response to either static or brief but intense dynamic loads. Furthermore, how do the results of various constitutive models compare with observed behavior.

Book New Approaches to Structural Mechanics  Shells and Biological Structures

Download or read book New Approaches to Structural Mechanics Shells and Biological Structures written by Horace R. Drew and published by Springer Science & Business Media. This book was released on 2002-09-30 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift marks the retirement of Professor Chris Calladine, FRS after 42 years on the teaching staff of the Department of Engineering, University of Cambridge. It contains a series of papers contributed by his former students, colleagues, and friends. Chris Calladine's research has ranged very widely across the field of struc tural mechanics, with a particular focus on the plastic deformation of solids and structures, and the behaviour of thin-shell structures. His insightful books on Engineering Plasticity and Theory of Shell Structures have been appreciated by many generations of students at Cambridge and elsewhere. His scientific contri bution outside engineering, in molecular structures, is at least as significant, and he is unique among engineers in having co-authored a book on DNA. Also, he has been keenly interested in the research of many students and colleagues, and on many occasions his quick grasp and physical insight have helped a student, and sometimes a colleague, find the nub of the problem without unnecessary effort. Many of the papers contained in this volume gratefully acknowledge this generous contribution. We thank Professor G. M. l. Gladwell for reading through all of the contri butions, Mrs R. Baxter and Mrs o. Constantinides for help in preparing this volume, Godfrey Argent Studio for permission to reproduce Calladine's por trait for the Royal Society, and Dr A. Schouwenburg -from Kluwer- for his assistance. Horace R. Drew Sergio Pellegrino ix CHRIS CALLADINE SOME THOUGHTS ON RESEARCH c. R.

Book Unified Strength Theory and Its Applications

Download or read book Unified Strength Theory and Its Applications written by Mao-Hong Yu and published by Springer. This book was released on 2017-11-21 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book thoroughly describes a theory concerning the yield and failure of materials under multi-axial stresses – the Unified Strength Theory, which was first proposed by the author and has been frequently quoted since. It provides a system of yield and failure criteria adopted for most materials, from metals to rocks, concretes, soils, and polymers. This new edition includes six additional chapters: General behavior of Strength theory function; Visualization of the Unified Strength Theory; Equivalent Stress of the UST and Comparisons with other criteria; Economic Signification of the UST; General form of failure criterion; Beauty of Strength Theories. It is intended for researchers and graduate students in various fields, including engineering mechanics, material mechanics, plasticity, soil mechanics, rock mechanics, mechanics of metallic materials and civil engineering, hydraulic engineering, geotechnical engineering, mechanical engineering and military engineering.

Book Shell Structures  Theory and Applications Volume 4

Download or read book Shell Structures Theory and Applications Volume 4 written by Wojciech Pietraszkiewicz and published by CRC Press. This book was released on 2017-10-30 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shells are basic structural elements of modern technology and everyday life. Examples of shell structures in technology include automobile bodies, water and oil tanks, pipelines, silos, wind turbine towers, and nanotubes. Nature is full of living shells such as leaves of trees, blooming flowers, seashells, cell membranes or wings of insects. In the human body arteries, the eye shell, the diaphragm, the skin and the pericardium are all shells as well. Shell Structures: Theory and Applications, Volume 4 contains 132 contributions presented at the 11th Conference on Shell Structures: Theory and Applications (Gdansk, Poland, 11-13 October 2017). The papers reflect a wide spectrum of scientific and engineering problems from theoretical modelling through strength, stability and dynamic behaviour, numerical analyses, biomechanic applications up to engineering design of shell structures. Shell Structures: Theory and Applications, Volume 4 will be of interest to academics, researchers, designers and engineers dealing with modelling and analyses of shell structures. It may also provide supplementary reading to graduate students in Civil, Mechanical, Naval and Aerospace Engineering.

Book Limit Analysis of Solids and Structures

Download or read book Limit Analysis of Solids and Structures written by Jacov A. Kamenjarzh and published by CRC Press. This book was released on 1996-07-24 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solids subjected to sufficiently large loads undergo plastic strain that does not vanish after unloading. Limit analysis is used to find out whether a given loading is safe against capacity loss due to intensive plastic deformation. Over the past 25 years, the theory and methods of limit analysis have undergone substantial development. This book gives a clear and complete presentation of the state of the art of limit analysis, including:

Book Yield Design

Download or read book Yield Design written by Jean Salençon and published by John Wiley & Sons. This book was released on 2013-05-06 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the middle of the 20th Century yield design approaches have been identified with the lower and upper bound theorem of limit analysis theory – a theory associated with perfect plasticity. This theory is very restrictive regarding the applicability of yield design approaches, which have been used for centuries for the stability of civil engineering structures. This book presents a theory of yield design within the original “equilibrium/resistance” framework rather than referring to the theories of plasticity or limit analysis; expressing the compatibility between the equilibrium of the considered structure and the resistance of its constituent material through simple mathematical arguments of duality and convex analysis results in a general formulation, which encompasses the many aspects of its implementation to various stability analysis problems. After a historic outline and an introductory example, the general theory is developed for the three-dimensional continuum model in a versatile form based upon simple arguments from the mathematical theory of convexity. It is then straightforwardly transposed to the one-dimensional curvilinear continuum, for the yield design analysis of beams, and the two-dimensional continuum model of plates and thin slabs subjected to bending. Field and laboratory observations of the collapse of mechanical systems are presented along with the defining concept of the multi-parameter loading mode. The compatibility of equilibrium and resistance is first expressed in its primal form, on the basis of the equilibrium equations and the strength domain of the material defined by a convex strength criterion along with the dual approach in the field of potentially safe loads, as is the highlighting of the role implicitly played by the theory of yield design as the fundamental basis of the implementation of the ultimate limit state design (ULSD) philosophy with the explicit introduction of resistance parameters. Contents 1. Origins and Topicality of a Concept. 2. An Introductory Example of the Yield Design Approach. 3. The Continuum Mechanics Framework. 4. Primal Approach of the Theory of Yield Design. 5. Dual Approach of the Theory of Yield Design. 6. Kinematic Exterior Approach. 7. Ultimate Limit State Design from the Theory of Yield Design. 8. Optimality and Probability Approaches of Yield Design. 9. Yield Design of Structures. 10. Yield Design of Plates: the Model. 11. Yield Design of Plates Subjected to Pure Bending. About the Authors Jean Salençon is Emeritus Professor at École polytechnique and École des ponts et chaussées, ParisTech, France. Since 2009 he has been a member of the Administrative Board of CNRS (Paris, France). He has received many awards including the Légion d’Honneur (Commander), Ordre National du Mérite (Officer) and Palmes Académiques (Commander). His research interests include structure analysis, soil mechanics and continuum mechanics.

Book Elastic  Plastic and Yield Design of Reinforced Structures

Download or read book Elastic Plastic and Yield Design of Reinforced Structures written by Patrick De Buhan and published by Elsevier. This book was released on 2017-07-21 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elastic, Plastic and Yield Design of Reinforced Structures presents a whole set of new results which have been published by the authors over the last 30 years in the field of continuum solid mechanics applied to the analysis and design of reinforced civil engineering structures. The focus is on the development and application of up-scaling/homogenization methods in the design of such composite structures, with a special emphasis on the plastic behavior and ultimate strength of materials. The specificity of the book is highlighted by at least two completely innovative concepts which lie at the very heart of the book's originality: the elaboration of a fully comprehensive homogenization-based method for the design of reinforced structures (and not only materials), through the study of macroscopic behavior, and the development of a multiphase model for materials reinforced by linear inclusions, which considerably extends the range of applicability of the classical homogenization procedure. - Sums up almost thirty years of original research in the field of mechanics applied to the analysis and design of reinforced civil engineering structures - Focuses on the application of upscaling/homogenization methods to the design of civil engineering structures - Highlights the elaboration of a fully comprehensive homogenization-based method for the design of reinforced structures (and not only materials), through the concept of macroscopic behavior - Features development of a multiphase model for materials reinforced by linear inclusions, which considerably extends the range of applicability of the classical homogenization procedure.

Book Limit Analysis and Concrete Plasticity

Download or read book Limit Analysis and Concrete Plasticity written by M.P. Nielsen and published by CRC Press. This book was released on 2016-04-19 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1984, Limit Analysis and Concrete Plasticity explains for advanced design engineers the principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design formulas. Updated and revised th

Book Solvability  Regularity  and Optimal Control of Boundary Value Problems for PDEs

Download or read book Solvability Regularity and Optimal Control of Boundary Value Problems for PDEs written by Pierluigi Colli and published by Springer. This book was released on 2017-11-03 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

Book Mechanics of Solids and Shells

Download or read book Mechanics of Solids and Shells written by Gerald Wempner and published by CRC Press. This book was released on 2002-10-29 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the theories and methods have evolved over the years, the mechanics of solid bodies has become unduly fragmented. Most books focus on specific aspects, such as the theories of elasticity or plasticity, the theories of shells, or the mechanics of materials. While a narrow focus serves immediate purposes, much is achieved by establishing the common foundations and providing a unified perspective of the discipline as a whole. Mechanics of Solids and Shells accomplishes these objectives. By emphasizing the underlying assumptions and the approximations that lead to the mathematical formulations, it offers a practical, unified presentation of the foundations of the mechanics of solids, the behavior of deformable bodies and thin shells, and the properties of finite elements. The initial chapters present the fundamental kinematics, dynamics, energetics, and behavior of materials that build the foundation for all of the subsequent developments. These are presented in full generality without the usual restrictions on the deformation. The general principles of work and energy form the basis for the consistent theories of shells and the approximations by finite elements. The final chapter views the latter as a means of approximation and builds a bridge between the mechanics of the continuum and the discrete assembly. Expressly written for engineers, Mechanics of Solids and Shells forms a reliable source for the tools of analysis and approximation. Its constructive presentation clearly reveals the origins, assumptions, and limitations of the methods described and provides a firm, practical basis for the use of those methods.