EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards

Download or read book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards written by and published by . This book was released on 2005 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aziridines and Epoxides in Organic Synthesis

Download or read book Aziridines and Epoxides in Organic Synthesis written by Andrei K. Yudin and published by John Wiley & Sons. This book was released on 2006-02-20 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aziridines and epoxides are among the most widely used intermediates in organic synthesis, acting as precursors to complex molecules due to the strains incorporated in their skeletons. Besides their importance as reactive intermediates, many biologically active compounds also contain these three-membered rings. Filling a gap in the literature, this clearly structured book presents the much needed information in a compact and concise way. The renowned editor has succeeded in gathering together excellent authors to cover synthesis, applications, and the biological aspects in equal depth. Divided roughly equally between aziridines and epoxides, the twelve chapters discuss: * Synthesis of aziridines * Nucleophilic ring-opening of aziridines and epoxides * Organic synthesis with aziridine building blocks * Vinyl aziridines in organic synthesis * Diastereoselective aziridination reagents * Synthetic aspects of aziridinomitocene chemistry * Biosynthesis of biologically important aziridines * Organic catalysis of epoxide and aziridine ring formation * Metal-mediated synthesis of epoxides * Asymmetric epoxide ring opening chemistry * Epoxides in complex molecule synthesis * Biological activity of epoxide-containing molecules A high-quality reference manual for academic and industrial chemists alike.

Book Non Covalent Catalysis and Hydrogen Bonding

Download or read book Non Covalent Catalysis and Hydrogen Bonding written by and published by GRIN Verlag. This book was released on 2019-08-08 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research Paper (undergraduate) from the year 2019 in the subject Chemistry - Bio-chemistry, grade: 1,0, University of Cologne, language: English, abstract: This work is about the non-covalent catalysis and concentrates on the hydrogen-bond catalysis. Nowadays it is common to use catalysis in organic synthesis. It can help in orienting the substrates, lowering barriers to reaction and accelerating the rates of reaction. In addition to metal-ligand systems and biocatalysts, there is another class of catalysts, the organocatalysts which are free of any metals, like many enzymes. The organocatalysts often consist of chiral compounds. The output materials are easy to find in the nature. How these catalysts accelerate the reaction rates is a central question in organic synthesis. It is important to distinguish the interactions with the organic substrates between covalent and non-covalent bonds. The activation of a carbonyl compound by conversion into an enamine or into an iminium ion belongs to the covalent catalysis, while to increase the electrophilicity of a carbonyl group by formation of hydrogen bondings is a typical example for non-covalent organocatalysis. Thus, the acceleration and the control of the reaction rates depend on formation of hydrogen bonds for non-covalent organocatalysis. It is possible to catalyse two hydrogen bonds which occur in dual hydrogen bonding donors.

Book Planar Chiral Hydrogen Bond Donor Catalysts

Download or read book Planar Chiral Hydrogen Bond Donor Catalysts written by Jakob Schneider and published by Cuvillier Verlag. This book was released on 2010-11-02 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the first synthesis and application of planar-chiral [2.2]paracyclophane- derived hydrogen-bond donor catalysts, thereby inducing a unique chiral motif into the emerging field of thiourea organocatalysis. Reaction acceleration through hydrogen-bond catalysis has made a significant impact on the field, rendering the development of potent catalyst structures extremely valuable. Based on the [2.2]paracyclophane scaffold, mono- and bi-functional thiourea catalysts were prepared. The rigidity of the [2.2]paracyclophane structure leads to a unique setup of the substituents. In pseudo-geminal position to the thiourea moiety, a hydroxy group was selected and introduced as the second functionality. In a 12-step synthesis, the enantiopure hydroxy- substituted [2.2]paracyclophanylene thiourea was obtained. Furthermore, efficient access to enantiopure pseudo-geminally substituted 13-amino-4- bromo[2.2]paracyclophane was developed. The aminobromide was employed in cross- coupling reactions to yield arylated amino[2.2]paracyclophanes, exhibiting a broad range of electronic and steric features useful for organocatalytic applications. The developed catalysts were applied in asymmetric organic transformations and proved most useful in the transfer hydrogenation reaction. The hydroxy-substituted thiourea catalyst particularly exhibited catalytic activity and stereoselectivity. To shed light on the mode of action of this class of hydrogen-bond catalysts, various analytic methods were conducted. Through extensive crystallographic and NMR complexation experiments, the binding properties of the catalysts were investigated in terms of their interaction with hydrogen-bond- accepting functional groups. Furthermore, quantum chemical DFT and ab initio calculations were undertaken to explore the favored conformations of [2.2]paracyclophane-derived thioureas. The combined findings revealed substrate-dependent activation via single or double hydrogen bonding between the NH groups of the thiourea and the respective substrate. Furthermore, a class of readily accessible hydrogen-bond thiourea catalysts was developed, derived from amino acids. Their steric and electronic features were modulated by their degree of substitution at the carbinol carbon center. All catalysts were applied in the asymmetric transfer hydrogenation of nitroolefins, furnishing the products in up to 99% yield and 87% enantiomeric excess.