Download or read book Physics of Gas Liquid Flows written by Thomas J. Hanratty and published by Cambridge University Press. This book was released on 2013-10-31 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting tools for understanding the behaviour of gas-liquid flows based on the ways large scale behaviour relates to small scale interactions, this text is ideal for engineers seeking to enhance the safety and efficiency of natural gas pipelines, water-cooled nuclear reactors, absorbers, distillation columns and gas lift pumps. The review of advanced concepts in fluid mechanics enables both graduate students and practising engineers to tackle the scientific literature and engage in advanced research. It focuses on gas-liquid flow in pipes as a simple system with meaningful experimental data. This unified theory develops design equations for predicting drop size, frictional pressure losses and slug frequency, which can be used to determine flow regimes, the effects of pipe diameter, liquid viscosity and gas density. It describes the effect of wavy boundaries and temporal oscillations on turbulent flows, and explains transition between phases, which is key to understanding the behaviour of gas-liquid flows.
Download or read book Fundamentals of Multiphase Flow written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2005-04-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book A Physical Introduction to Fluid Mechanics written by Alexander J. Smits and published by Wiley-VCH. This book was released on 2000 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover Effective Engineering Solutions to Practical Problems With its clear explanation of fundamental principles and emphasis on real world applications, this practical text will motivate readers to learn. The author connects theory and analysis to practical examples drawn from engineering practice. Readers get a better understanding of how they can apply these concepts to develop engineering answers to various problems. By using simple examples that illustrate basic principles and more complex examples representative of engineering applications throughout the text, the author also shows readers how fluid mechanics is relevant to the engineering field. These examples will help them develop problem-solving skills, gain physical insight into the material, learn how and when to use approximations and make assumptions, and understand when these approximations might break down. Key Features of the Text * The underlying physical concepts are highlighted rather than focusing on the mathematical equations. * Dimensional reasoning is emphasized as well as the interpretation of the results. * An introduction to engineering in the environment is included to spark reader interest. * Historical references throughout the chapters provide readers with the rich history of fluid mechanics.
Download or read book Fox and McDonald s Introduction to Fluid Mechanics written by Robert W. Fox and published by John Wiley & Sons. This book was released on 2020-06-30 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.
Download or read book Gas liquid Flows written by Barry J. Azzopardi and published by Begell House Publishers. This book was released on 2006-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Two Phase Flow Boiling and Condensation written by S. Mostafa Ghiaasiaan and published by Cambridge University Press. This book was released on 2014-08-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics that are essential for a graduate first course. Among the important areas that are discussed in the book, and are not adequately covered by virtually all the available textbooks, are: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.
Download or read book Vortex Flows and Related Numerical Methods written by J.T. Beale and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.
Download or read book Refrigeration Systems and Applications written by Ibrahim Din¿er and published by John Wiley & Sons. This book was released on 2017-03-23 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.
Download or read book Multiphase Flow Handbook Second Edition written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Download or read book Bubbly Flows written by Martin Sommerfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.
Download or read book Differential Models written by Alexander Solodov and published by Springer Science & Business Media. This book was released on 2005 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are often used in mathematical models for technological processes or devices. However, the design of a differential mathematical model iscrucial anddifficult in engineering. As a hands-on approach to learn how to pose a differential mathematical modelthe authors have selected 9 examples with important practical application and treat them as following:- Problem-setting and physical model formulation- Designing the differential mathematical model- Integration of the differential equations- Visualization of results Each step of the development ofa differential model isenriched by respective Mathcad 11commands, todays necessary linkage of engineering significance and high computing complexity. TOC:Differential Mathematical Models.- Integrable Differential Equations.- Dynamic Model of the System with Heat Engineering.- Stiff Differential Equations.- Heat Transfer near the Critical Point.- The Faulkner- Skan Equation of Boundary Layer.- The Rayleigh Equation: Hydronamic Instability.- Kinematic Waves of Concentration in Ion- Exchange Filters.- Kinematic Shock Waves.- Numerical Modelling of the CPU-board Temperature Field.- Temperature Waves.
Download or read book Liquid Metal Magnetohydrodynamics written by J.J. Lielpeteris and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid metal MHO is within the scope of two series of international conferences. One is the International Congress on "MHD Power Generation", held every four years, which includes technical and economical aspects as well as scientific questions. The other if the Beer-Sheva Seminar on "MHO Flows and Turbulence", held every three years in Israel. In addition to these well established meetings, an IUTAM Symposium was previously organized in Cambridge (UK) in 1982 on "Metallurgical Applications of MHD" by the late Arthur Shercliff. It was focussed on a very specific subject developing radiply from the middle of the 1970's. The magnetic field was generally AC, including frequencies high enough for the skin-depth to be much smaller than the typical length scale of the liquide pool. And the development of new technologies, or the improvement of existing ones, was the main justification of most of the researches presented and discussed. Only two participants from Eastern countries attended this Symposium. By the middle of the 1980's we felt that on this very same topic ideas had reached much more maturity than in 1982. We also realized that a line of research on MHD flows related to fusion reactors (tokamaks) was developing significantly, with particular emphasis on flows at large interaction parameter.
Download or read book An Informal Introduction to Turbulence written by A. Tsinober and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N's 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.
Download or read book Prandtl s Essentials of Fluid Mechanics written by Herbert Oertel and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an update and extension of the classic textbook by Ludwig Prandtl, Essentials of Fluid Mechanics. It is based on the 10th German edition with additional material included. Chapters on wing aerodynamics, heat transfer, and layered flows have been revised and extended, and there are new chapters on fluid mechanical instabilities and biomedical fluid mechanics. References to the literature have been kept to a minimum, and the extensive historical citations may be found by referring to previous editions. This book is aimed at science and engineering students who wish to attain an overview of the various branches of fluid mechanics. It will also be useful as a reference for researchers working in the field of fluid mechanics.
Download or read book Introduction to Multiphase Flow written by George Yadigaroglu and published by Springer. This book was released on 2017-08-19 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the maiden volume in a new series devoted to lectures delivered through the annual seminars “Short Courses on Multiphase Flow,” held primarily at ETH Zurich continuously since 1984. The Zurich short courses, presented by prominent specialists in the various topics covered, have attracted a very large number of participants. This series presents fully updated and when necessary re-grouped lectures in a number of topical volumes. The collection aims at giving a condensed, critical and up-to-date view of basic knowledge on multiphase flows in relation to systems and phenomena encountered in industrial applications. The present volume covers the background of Multiphase Flows (MPF) that introduces the reader to the particular nature and complexity of multiphase flows and to basic but critical aspects of MPFs including concepts and the definition of the quantities of interest, an introduction to modelling strategies for MPFs, flow regimes, flow regime maps and tr ansition criteria. It also deals with the ubiquitous needs of the multiphase-flow modeller, namely pressure drop and phase distribution, i.e., the void fraction and the topology of the phases that determines the flow regimes.
Download or read book Fluid Mechanics Measurements written by R. Goldstein and published by Routledge. This book was released on 2017-11-13 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition provides updated fluid mechanics measurement techniques as well as a comprehensive review of flow properties required for research, development, and application. Fluid-mechanics measurements in wind tunnel studies, aeroacoustics, and turbulent mixing layers, the theory of fluid mechanics, the application of the laws of fluid mechanics to measurement techniques, techniques of thermal anemometry, laser velocimetry, volume flow measurement techniques, and fluid mechanics measurement in non-Newtonian fluids, and various other techniques are discussed.
Download or read book Heat Pipe Design and Technology written by Bahman Zohuri and published by Springer. This book was released on 2016-04-28 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a practical study of modern heat pipe engineering, discussing how it can be optimized for use on a wider scale. An introduction to operational and design principles, this book offers a review of heat and mass transfer theory relevant to performance, leading into and exploration of the use of heat pipes, particularly in high-heat flux applications and in situations in which there is any combination of non-uniform heat loading, limited airflow over the heat generating components, and space or weight constraints. Key implementation challenges are tackled, including load-balancing, materials characteristics, operating temperature ranges, thermal resistance, and operating orientation. With its presentation of mathematical models to calculate heat transfer limitations and temperature gradient of both high- and low-temperature heat pipes, the book compares calculated results with the available experimental data. It also includes a series of computer programs developed by the author to support presented data, aid design, and predict performance.