EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physical Simulation  Fabrication and Characterization of Wide Bandgap Semiconductor Devices

Download or read book Physical Simulation Fabrication and Characterization of Wide Bandgap Semiconductor Devices written by Sadia Muniza Faraz and published by . This book was released on 2011 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wide Bandgap Semiconductor Electronics And Devices

Download or read book Wide Bandgap Semiconductor Electronics And Devices written by Uttam Singisetti and published by World Scientific. This book was released on 2019-12-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.

Book Next Generation Integrated Behavioral and Physics based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics

Download or read book Next Generation Integrated Behavioral and Physics based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics written by Michael Robert Hontz and published by . This book was released on 2019 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation investigates the modeling of next generation wide bandgap semiconductors in several domains. The first model developed is of a GaN Schottky diode with a unique AlGaN cap layer. This model is developed using fundamental physical laws and analysis and allows for the characteristics of the diode to be designed by adjusting aspects of the diode's fabrication and structure. The second model is of a lateral GaN HEMT and is developed using TCAD simulation software in order to fit experimental data based on static characteristics. This procedure endeavors to simultaneously fit several output characteristics of the HEMT device to facilitate the applicability and evaluation of the device for power electronics applications. This model is then used to analyze the effects of various substrate material choices on the performance of the GaN HEMT in a switching application. Finally, a link between TCAD models of devices and a circuit simulation platform is demonstrated. This system allows for simulation and testing of devices in complex power electronic systems while maintaining a direct dependence between the system-level performance and the physical parameters of the device. This link between TCAD and circuit simulation is then used to develop an iterative optimization procedure to design a semiconductor device for a particular power electronic application. The work demonstrated here develops procedures to create high-fidelity models of wide bandgap semiconductor devices and enables the purposeful design of devices for their intended application with a high degree of confidence in meeting system requirements. It is through this focusing of device modeling and design, that the rate of technological transfer of next-generation semiconductor devices to power electronics systems can be improved.

Book Purification  Growth  Fabrication and Characterization of Wide Bandgap Materials  Final Technical Report

Download or read book Purification Growth Fabrication and Characterization of Wide Bandgap Materials Final Technical Report written by and published by . This book was released on 1998 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide bandgap semiconductor single crystals, such as heavy metal halide compounds, have been grown by physical vapor transport and Bridgman methods. Zone-refining and vacuum sublimation techniques were used to purify and adjust the stoichiometric composition of the starting material, and were proven to be effective. Several spectroscopic, microscopic and thermodynamic analytical techniques were employed to investigate the optical, electrical and structural properties of crystals. These results revealed information regarding micro- and macroscopic defects, impurities and modifications resulting from source material, growth process, post-growth treatment and device fabrication. Crystal growth and processing conditions have been correlated with this information and were optimized to achieve the purest and highest quality materials for practical device applications. Future works will involve optimization of material purification and crystal growth processes to produce high purity and low defect crystals, development of sensitive material characterization tools allowing a better understanding of defects formation and their correlation with processing conditions. Developments in bulk crystal growth research for detector devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials based on heavy metal halides semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures.

Book Wide Bandgap Semiconductor Power Devices

Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Book Multi level Integrated Modeling of Wide Bandgap Semiconductor Devices  Components  Circuits  and Systems for Next Generation Power Electronics

Download or read book Multi level Integrated Modeling of Wide Bandgap Semiconductor Devices Components Circuits and Systems for Next Generation Power Electronics written by Andrew Joseph Sellers and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation investigates the propagation of information between models of disparate computational complexity and simulation domains with specific focus on the modeling of wide bandgap semiconductors for power electronics applications. First, analytical physics models and technology computer-aided design numerical physics models are presented. These types of physics models are contrasted by ease of generation and computational complexity. Next, processes generating transient simulations from these models are identified. Mixed-mode simulation and behavioral device models are established as two available options. Of these two, behavioral models are identified as the method producing superior computational performance due to their much-reduced simulation time. A comparison of switching performance for two wide bandgap field-effect transistors manufactured with the same process is next presented. Empirical and simulated switching results demonstrate that available models predict the slew rates reasonably well, but fail to accurately capture ringing frequencies. This is attributed to two primary causes; the modeling tool used for this comparison is incapable of producing a sufficiently high-quality fit to ensure accurate prediction and the devices are sensitive to parasitic values beyond the measurement uncertainty of the characterization hardware. To remedy this, a two-fold approach is necessary. First, a new model must be generated which is more capable of predicting steady-state performance. Second, a characterization procedure must be produced which tunes parameters beyond what is possible with empirical characterization. To the first point, a novel model based on the Curtice model is presented. The novel model adapts the Curtice model by adding gate-bias dependence to model parameters and introducing an exponential smoothing function to account for the gradual transition from linear to saturation exhibited by some wide bandgap field-effect transistors. Care is taken to model forward conduction, reverse conduction, and transfer characteristics with high accuracy. Non-linear capacitances are then modeled using a charge-based lookup table demonstrated by previous work in the literature to be effective. Thermal performance is accounted for with both the incorporation of thermal scaling factors and a thermal RC network to account for joule-heating. The proposed model is capable of capturing device steady-state and small-signal performance more precisely than previous models. A tuning and optimization procedure is next presented which is capable of tuning device model parasitic values within uncertainty bounds of characterization data. This method identifies the need for and introduces new model parameters intended to account for dispersive phenomena to a first degree. Pairing this method with the aforementioned model, significant improvements in transient agreement can be achieved for fast-switching devices. A method is also presented which identifies and quantifies the impact of parameters on transient performance. This process can be used to remove model parameters from the tuning set and possibly decouple parameter tuning. The propagation of these fully-tuned device and circuit models to the system level is next discussed. The cases of a buck converter and double pulse test are used as examples of dc switching circuits which may be used for switching characterization and to account for switching losses. Simulation is used to demonstrate that these circuits, when using similar components, produce comparable results. This allows the use of double pulse tests for switching characterization in simulation, thus eliminating the need for quasi-steady-state conditions to be reached in converter simulation. Methods are proposed for the inclusion of this data into system-level models such that simulation time will be minimally impacted. When used in conjunction, the methods presented in this chapter are sufficient to propagate information from the physics level all the way through to the system level. If specific circuits and system components are known, the impact of including a theoretical device can be assessed. This lends itself to advanced design of each type of model by analyzing the interactions predicted by various levels of models. This has serious implications for accelerating the deployment of wide bandgap semiconductor in power electronics by addressing the primary concerns of reliability and ease of implementation. By using these methods, devices, circuits, and systems can each be optimized to fully benefit from the theoretical advantages presented by wide bandgap semiconductor materials.

Book Wide Energy Bandgap Electronic Devices

Download or read book Wide Energy Bandgap Electronic Devices written by Fan Ren and published by World Scientific. This book was released on 2003 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by K. N. Bhat and published by Alpha Science Int'l Ltd.. This book was released on 2004 with total page 1310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributed papers of the workshop held at IIT, Madras, in 2003.

Book Wide Bandgap Semiconductors

Download or read book Wide Bandgap Semiconductors written by M. S. Chinthavali and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters. With the advent of the use of SiC devices it is imperative that models of these be made available in commercial simulators. This enables power electronic designers to simulate their designs for various test conditions prior to fabrication. To build an accurate transistor-level model of a power electronic system such as an inverter, the first step is to characterize the semiconductor devices that are present in the system. Suitable test beds need to be built for each device to precisely test the devices and obtain relevant data that can be used for modeling. This includes careful characterization of the parasitic elements so as to emulate the test setup as closely as possible in simulations. This report is arranged as follows: Chapter 2--The testing and characterization of several diodes and power switches is presented. Chapter 3--A 55-kW hybrid inverter (Si insulated gate bipolar transistor--SiC Schottky diodes) device models and test results are presented. A detailed description of the various test setups followed by the parameter extraction, modeling, and simulation study of the inverter performance is presented. Chapter 4--A 7.5-kW all-SiC inverter (SiC junction field effect transistors (JFET)--SiC Schottky diodes) was built and tested. The models built in Saber were validated using the test data and the models were used in system applications in the Saber simulator. The simulation results and a comparison of the data from the prototype tests are discussed in this chapter. Chapter 5--The duration test results of devices utilized in buck converters undergoing reliability testing are presented.

Book Device Characterization and Modeling of Large Size GaN HEMTs

Download or read book Device Characterization and Modeling of Large Size GaN HEMTs written by Jaime Alberto Zamudio Flores and published by kassel university press GmbH. This book was released on 2012-08-21 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a comprehensive modeling strategy for advanced large-size AlGaN/GaN HEMTs. A 22-element equivalent circuit with 12 extrinsic elements, including 6 capacitances, serves as small-signal model and as basis for a large-signal model. ANalysis of such capacitances leads to original equations, employed to form capacitance ratios. BAsic assumptions of existing parameter extractions for 22-element equivalent circuits are perfected: A) Required capacitance ratios are evaluated with device's top-view images. B) Influences of field plates and source air-bridges on these ratios are considered. The large-signal model contains a gate charge's non-quasi-static model and a dispersive-IDS model. THe extrinsic-to-intrinsic voltage transformation needed to calculate non-quasi-static parameters from small-signal parameters is improved with a new description for the measurement's boundary bias points. ALl IDS-model parameters, including time constants of charge-trapping and self-heating, are extracted using pulsed-DC IV and IDS-transient measurements, highlighting the modeling strategy's empirical character.

Book Wide Bandgap  SiC GaN  Power Devices Characterization and Modeling

Download or read book Wide Bandgap SiC GaN Power Devices Characterization and Modeling written by Ke Li and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe.

Book Un an de th    tre

    Book Details:
  • Author : Yves-Bonnat
  • Publisher :
  • Release : 1942
  • ISBN :
  • Pages : 63 pages

Download or read book Un an de th tre written by Yves-Bonnat and published by . This book was released on 1942 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Disruptive Wide Bandgap Semiconductors  Related Technologies  and Their Applications

Download or read book Disruptive Wide Bandgap Semiconductors Related Technologies and Their Applications written by Yogesh Kumar Sharma and published by BoD – Books on Demand. This book was released on 2018-09-12 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: SiC and GaN devices have been around for some time. The first dedicated international conference on SiC and related devices, "ICSCRM," was held in Washington, DC, in 1987. But only recently, the commercialization of SiC and GaN devices has happened. Due to its material properties, Si as a semiconductor has limitations in high-temperature, high-voltage, and high-frequency regimes. With the help of SiC and GaN devices, it is possible to realize more efficient power systems. Devices manufactured from SiC and GaN have already been impacting different areas with their ability to outperform Si devices. Some of the examples are the telecommunications, automotive/locomotive, power, and renewable energy industries. To achieve the carbon emission targets set by different countries, it is inevitable to use these new technologies. This book attempts to cover all the important facets related to wide bandgap semiconductor technology, including new challenges posed by it. This book is intended for graduate students, researchers, engineers, and technology experts who have been working in the exciting fields of SiC and GaN power devices.

Book Directory of Published Proceedings

Download or read book Directory of Published Proceedings written by and published by . This book was released on 2002 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by Michael Shur and published by World Scientific. This book was released on 2006 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices ? power switching Schottky diodes and high temperature MESFETs ? are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.

Book Advanced Simulation of Wide Band Gap Semiconductor Devices

Download or read book Advanced Simulation of Wide Band Gap Semiconductor Devices written by Maziar Farahmand and published by . This book was released on 2000 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: