EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Photonic Crystal Laser driven Accelerator Structures

Download or read book Photonic Crystal Laser driven Accelerator Structures written by Benjamin M. Cowan and published by . This book was released on 2007 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Photonic Crystal Laser Accelerator Structures

Download or read book Photonic Crystal Laser Accelerator Structures written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

Book Photonic Crystal Laser Driven Accelerator Structures

Download or read book Photonic Crystal Laser Driven Accelerator Structures written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals--structures whose electromagnetic properties are spatially periodic--can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

Book Photonic Crystal Laser Driven Accelerator Structures

Download or read book Photonic Crystal Laser Driven Accelerator Structures written by B. Cowan and published by . This book was released on 2005 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

Book Three Dimensional Photonic Crystal Laser Driven Accelerator Structures

Download or read book Three Dimensional Photonic Crystal Laser Driven Accelerator Structures written by B. Cowan and published by . This book was released on 2006 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

Book Compact Couplers for Photonic Crystal Laser Driven Accelerator Structures

Download or read book Compact Couplers for Photonic Crystal Laser Driven Accelerator Structures written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

Book Three dimensional Dielectric Photonic Crystal Structures for Laser driven Acceleration

Download or read book Three dimensional Dielectric Photonic Crystal Structures for Laser driven Acceleration written by and published by . This book was released on 2007 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present the design and simulation of a three-dimensional photonic crystal waveguide for linear laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical fields as focusing elements. This technique, combined with careful structure design, is shown to have a large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.

Book Two Dimensional Photonic Crystal Accelerator Structures

Download or read book Two Dimensional Photonic Crystal Accelerator Structures written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed, and consider trade-offs inherent in the design of an accelerator of this type.

Book Photonic Crystal and Its Applications for Next Generation Systems

Download or read book Photonic Crystal and Its Applications for Next Generation Systems written by Shanmuga Sundar Dhanabalan and published by Springer Nature. This book was released on 2023-07-07 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the advanced fabrication techniques, challenges, and applications of photonic crystals for next-generation systems in various applications such as high-speed networks, photonic integrated circuits, health care, sensors, energy, and environmental. This book highlights the literature and works put forward by various scientists, researchers, and academicians in photonic crystals and their real-time applications. The content of the book appeals to readers such as students, researchers, and industrial engineers who are working in the design and development of photonics-based concepts, components, and devices for various applications.

Book Advanced Accelerator Concepts

Download or read book Advanced Accelerator Concepts written by Vitaly Yakimenko and published by American Institute of Physics. This book was released on 2004-12-14 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings cover new developments for a number of the most advanced methods for acceleration of heavy ions, protons, electrons and positrons.

Book Advanced Accelerator Concepts

    Book Details:
  • Author : Christopher E. Clayton
  • Publisher : American Inst. of Physics
  • Release : 2002-12-06
  • ISBN : 9780735401020
  • Pages : 952 pages

Download or read book Advanced Accelerator Concepts written by Christopher E. Clayton and published by American Inst. of Physics. This book was released on 2002-12-06 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10th Workshop on Advanced Accelerator Concepts reviews the current progress in the rapidly growing field of advanced accelerators. This series of DOE-sponsored workshops attracts researchers who invent and explore the physics and technologies needed to generate, accelerate, and manipulate particles with plasmas, laser and particle beams, as well as RF and mm-waves. Applications include advanced radiation sources and high energy physics.

Book Applications of Laser Driven Particle Acceleration

Download or read book Applications of Laser Driven Particle Acceleration written by Paul Bolton and published by CRC Press. This book was released on 2018-06-04 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Jörg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universität München in München, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts

Book Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration

Download or read book Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration written by and published by . This book was released on 2010 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 [mu]m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form the complete seventeen layer woodpile accelerator structure.

Book Beam Wave Interaction in Periodic and Quasi Periodic Structures

Download or read book Beam Wave Interaction in Periodic and Quasi Periodic Structures written by Levi Schächter and published by Springer Science & Business Media. This book was released on 2011-06-27 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book’s usefulness for teaching specialized graduate courses.

Book Photonic Crystals

Download or read book Photonic Crystals written by Qihuang Gong and published by CRC Press. This book was released on 2014-02-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of photonic crystals and, as the title suggests, covers their principles and applications. It is written from a physics point of view with an emphasis on materials science. Equations are well explained and often completely avoided to increase the readability of the book. The book is divided into eight chapters, starting with a brief introduction. The second chapter deals with different dimensionalities of the photonic crystals and their properties. The third chapter is very interestingly written and provides a survey of the various synthesis methods used for production of photonic crystals, including chemical routes, lithography, and self-assembly of colloidal photonic crystals. Chapters 4–8 constitute the bulk of the book and provide examples of applications of these photonic crystals. Chapter 4 offers a good explanation of optical switching. Bandgap and defect mode switching are also brought into focus along with many other mechanisms—14 different switching mechanisms in all, including thermal, electro, and magneto switching. Frequency tuning of photonic crystal filters with special attention to nanosize photonic crystals is illustrated, providing a direct perspective on applications of these materials in integrated photonic circuits. The transition from chapter 5 to 6 dealing with photonic crystal lasers is smooth, especially after a clear description of frequency tuning. Here, one- to three-dimensional photonic lasers are explained along with laser oscillations produced by a variety of microcavity methods. Metallodielectric and liquid-crystal photonic lasers are equally well illustrated. Chapter 7 introduces logic devices based on photonic crystals. This chapter clearly explains, with the help of simple illustrations, how to obtain AND, OR, and XOR logic gates. Chapter 8 concludes the book by presenting possible applications, including gas, chemical, fluid, and cell sensing; their workings are very well described from a fundamental point of view. The diagrams and illustrations are appropriate and eye catching. There are ample references; thus readers are able to find more detailed information to satisfy their curiosity if the book does not suffice. Even though the introduction provides basics of these photonic crystals, I do get the impression that the bigger picture is missing. A nonexpert may not understand the direct application of such materials right from the beginning of the book. A flowchart or a diagram of these photonic crystals, illustrating applications in daily life at the beginning of the book, could attract a broader readership. In this regard, I believe that this book is most adapted to physicists with a materials science background or vice versa. However, one should take into consideration that the principles of photonic crystals cannot be explained without physics, and therefore the quality of this book remains intact and could very well serve as a textbook for future physicists.

Book Tunable Micro optics

Download or read book Tunable Micro optics written by Hans Zappe and published by Cambridge University Press. This book was released on 2015-12-17 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia, and advanced students working on optical systems design.

Book Hollow Core Photonic Band Gap Fibers for Particle Acceleration

Download or read book Hollow Core Photonic Band Gap Fibers for Particle Acceleration written by and published by . This book was released on 2011 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.