EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Recommender Systems and the Social Web

Download or read book Recommender Systems and the Social Web written by Fatih Gedikli and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user’s individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere.

Book Social Network Based Recommender Systems

Download or read book Social Network Based Recommender Systems written by Daniel Schall and published by Springer. This book was released on 2015-09-23 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on ‘social brokers’ are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text.

Book Recommender Systems

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer
  • Release : 2016-03-28
  • ISBN : 3319296590
  • Pages : 518 pages

Download or read book Recommender Systems written by Charu C. Aggarwal and published by Springer. This book was released on 2016-03-28 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Book Recommender Systems for the Social Web

Download or read book Recommender Systems for the Social Web written by José J. Pazos Arias and published by Springer Science & Business Media. This book was released on 2012-01-24 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recommendation of products, content and services cannot be considered newly born, although its widespread application is still in full swing. While its growing success in numerous sectors, the progress of the Social Web has revolutionized the architecture of participation and relationship in the Web, making it necessary to restate recommendation and reconciling it with Collaborative Tagging, as the popularization of authoring in the Web, and Social Networking, as the translation of personal relationships to the Web. Precisely, the convergence of recommendation with the above Social Web pillars is what motivates this book, which has collected contributions from well-known experts in the academy and the industry to provide a broader view of the problems that Social Recommenders might face with. If recommender systems have proven their key role in facilitating the user access to resources on the Web, when sharing resources has become social, it is natural for recommendation strategies in the Social Web era take into account the users’ point of view and the relationships among users to calculate their predictions. This book aims to help readers to discover and understand the interplay among legal issues such as privacy; technical aspects such as interoperability and scalability; and social aspects such as the influence of affinity, trust, reputation and likeness, when the goal is to offer recommendations that are truly useful to both the user and the provider.

Book Recommender System with Machine Learning and Artificial Intelligence

Download or read book Recommender System with Machine Learning and Artificial Intelligence written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2020-07-08 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Book Social Informatics

    Book Details:
  • Author : Karl Aberer
  • Publisher : Springer
  • Release : 2012-11-27
  • ISBN : 364235386X
  • Pages : 571 pages

Download or read book Social Informatics written by Karl Aberer and published by Springer. This book was released on 2012-11-27 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 4th International Conference on Social Informatics, SocInfo 2012, held in Lausanne, Switzerland, in December 2012. The 21 full papers, 18 short papers included in this volume were carefully reviewed and selected from 61 submissions. The papers are organized in topical sections named: social choice mechanisms in the e-society,computational models of social phenomena, social simulation, web mining and its social interpretations, algorithms and protocols inspired by human societies, socio-economic systems and applications, trust, privacy, risk and security in social contexts.

Book The Adaptive Web

    Book Details:
  • Author : Peter Brusilovski
  • Publisher : Springer Science & Business Media
  • Release : 2007-04-24
  • ISBN : 3540720782
  • Pages : 770 pages

Download or read book The Adaptive Web written by Peter Brusilovski and published by Springer Science & Business Media. This book was released on 2007-04-24 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art survey provides a systematic overview of the ideas and techniques of the adaptive Web and serves as a central source of information for researchers, practitioners, and students. The volume constitutes a comprehensive and carefully planned collection of chapters that map out the most important areas of the adaptive Web, each solicited from the experts and leaders in the field.

Book Recommender Systems Handbook

Download or read book Recommender Systems Handbook written by Francesco Ricci and published by Springer. This book was released on 2015-11-17 with total page 1008 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.

Book Social Media Retrieval

    Book Details:
  • Author : Naeem Ramzan
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-05
  • ISBN : 1447145550
  • Pages : 479 pages

Download or read book Social Media Retrieval written by Naeem Ramzan and published by Springer Science & Business Media. This book was released on 2012-12-05 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text/reference examines in depth the synergy between multimedia content analysis, personalization, and next-generation networking. The book demonstrates how this integration can result in robust, personalized services that provide users with an improved multimedia-centric quality of experience. Each chapter offers a practical step-by-step walkthrough for a variety of concepts, components and technologies relating to the development of applications and services. Topics and features: introduces the fundamentals of social media retrieval, presenting the most important areas of research in this domain; examines the important topic of multimedia tagging in social environments, including geo-tagging; discusses issues of personalization and privacy in social media; reviews advances in encoding, compression and network architectures for the exchange of social media information; describes a range of applications related to social media.

Book Data Mining for Social Network Data

Download or read book Data Mining for Social Network Data written by Nasrullah Memon and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by counter-terrorism efforts, marketing analysis and an explosion in online social networking in recent years, data mining has moved to the forefront of information science. This proposed Special Issue on Data Mining for Social Network Data will present a broad range of recent studies in social networking analysis. It will focus on emerging trends and needs in discovery and analysis of communities, solitary and social activities, activities in open for a and commercial sites as well. It will also look at network modeling, infrastructure construction, dynamic growth and evolution pattern discovery using machine learning approaches and multi-agent based simulations. Editors are three rising stars in world of data mining, knowledge discovery, social network analysis, and information infrastructures, and are anchored by Springer author/editor Hsinchun Chen (Terrorism Informatics; Medical Informatics; Digital Government), who is one of the most prominent intelligence analysis and data mining experts in the world.

Book Recommender Systems

    Book Details:
  • Author : Dietmar Jannach
  • Publisher : Cambridge University Press
  • Release : 2010-09-30
  • ISBN : 1139492594
  • Pages : pages

Download or read book Recommender Systems written by Dietmar Jannach and published by Cambridge University Press. This book was released on 2010-09-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.

Book Proceedings of the International Conference on Cognitive and Intelligent Computing

Download or read book Proceedings of the International Conference on Cognitive and Intelligent Computing written by Amit Kumar and published by Springer Nature. This book was released on 2023-01-01 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents original, peer-reviewed select articles from the International Conference on Cognitive & Intelligent Computing (ICCIC – 2021), held on December 11–12, 2021, at Hyderabad, India. The proceedings has cutting edge Research outcome related to Machine learning in control applications, Soft computing, Pattern Recognition, Decision Support Systems, Text analytics and NLP, Statistical Learning, Neural Network Learning, Learning Through Fuzzy Logic, Learning Through Evolution (Evolutionary Algorithms), Reinforcement Learning, Multi-Strategy Learning, Cooperative Learning, Planning And Learning, Multi-Agent Learning, Online And Incremental Learning, Scalability Of Learning Algorithms, Inductive Learning, Inductive Logic Programming, Bayesian Networks, Support Vector Machines, Case-Based Reasoning, Multi-Agent Systems, Human–Computer Interaction, Data Mining and Knowledge Discovery, Knowledge Management and Networks, Data Intensive Computing Architecture, Medicine, Health, Bioinformatics, and Systems Biology, Industrial and Engineering Applications, Security Applications, Smart Cities, Game Playing and Problem Solving, Intelligent Virtual Environments, Economics, Business, And Forecasting Applications. Articles in the book are carefully selected on the basis of their application orientation. The content is expected to be especially useful for Professionals, Researchers, Research students working in the area of cognitive and intelligent computing.

Book Recommender Systems

    Book Details:
  • Author : P. Pavan Kumar
  • Publisher : CRC Press
  • Release : 2021-06-01
  • ISBN : 1000387372
  • Pages : 182 pages

Download or read book Recommender Systems written by P. Pavan Kumar and published by CRC Press. This book was released on 2021-06-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems. The book examines several classes of recommendation algorithms, including Machine learning algorithms Community detection algorithms Filtering algorithms Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others. Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include A latent-factor technique for model-based filtering systems Collaborative filtering approaches Content-based approaches Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.

Book Recommender Systems  Advanced Developments

Download or read book Recommender Systems Advanced Developments written by Jie Lu and published by World Scientific. This book was released on 2020-08-04 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.

Book Personalization Techniques and Recommender Systems

Download or read book Personalization Techniques and Recommender Systems written by Gulden Uchyigit and published by World Scientific. This book was released on 2008 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The phenomenal growth of the Internet has resulted in huge amounts of online information, a situation that is overwhelming to the end users. To overcome this problem, personalization technologies have been extensively employed.The book is the first of its kind, representing research efforts in the diversity of personalization and recommendation techniques. These include user modeling, content, collaborative, hybrid and knowledge-based recommender systems. It presents theoretic research in the context of various applications from mobile information access, marketing and sales and web services, to library and personalized TV recommendation systems.This volume will serve as a basis to researchers who wish to learn more in the field of recommender systems, and also to those intending to deploy advanced personalization techniques in their systems.

Book Practical Recommender Systems

Download or read book Practical Recommender Systems written by Kim Falk and published by Simon and Schuster. This book was released on 2019-01-18 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. About the Book Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows. What's inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python About the Reader Readers need intermediate programming and database skills. About the Author Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems. Table of Contents PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS What is a recommender? User behavior and how to collect it Monitoring the system Ratings and how to calculate them Non-personalized recommendations The user (and content) who came in from the cold PART 2 - RECOMMENDER ALGORITHMS Finding similarities among users and among content Collaborative filtering in the neighborhood Evaluating and testing your recommender Content-based filtering Finding hidden genres with matrix factorization Taking the best of all algorithms: implementing hybrid recommenders Ranking and learning to rank Future of recommender systems

Book Collaborative Filtering Recommender Systems

Download or read book Collaborative Filtering Recommender Systems written by Michael D. Ekstrand and published by Now Publishers Inc. This book was released on 2011 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collaborative Filtering Recommender Systems discusses a wide variety of the recommender choices available and their implications, providing both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.