EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elliptic Systems of Phase Transition Type

Download or read book Elliptic Systems of Phase Transition Type written by Nicholas D. Alikakos and published by Springer. This book was released on 2019-01-21 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes – non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations – ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science.

Book Sixteen papers on differential equations

Download or read book Sixteen papers on differential equations written by D. M. Galin and published by American Mathematical Soc.. This book was released on 1982-12-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Critical Point Theory

    Book Details:
  • Author : Martin Schechter
  • Publisher : Springer Nature
  • Release : 2020-05-30
  • ISBN : 303045603X
  • Pages : 347 pages

Download or read book Critical Point Theory written by Martin Schechter and published by Springer Nature. This book was released on 2020-05-30 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.

Book Dynamics of Nonlinear Waves in Dissipative Systems Reduction  Bifurcation and Stability

Download or read book Dynamics of Nonlinear Waves in Dissipative Systems Reduction Bifurcation and Stability written by G Dangelmayr and published by CRC Press. This book was released on 1996-08-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .

Book The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains

Download or read book The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains written by Christian G Simader and published by CRC Press. This book was released on 1996-11-07 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Dirichlet Problem -?u=ƒ in G, u|?G=0 for the Laplacian in a domain GÌRn with boundary ?G is one of the basic problems in the theory of partial differential equations and it plays a fundamental role in mathematical physics and engineering.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1884 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Progress in Nonlinear Analysis

Download or read book Progress in Nonlinear Analysis written by Gongqing Zhang and published by World Scientific. This book was released on 2000 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The real world is complicated, as a result of which most mathematical models arising from mechanics, physics, chemistry and biology are nonlinear. Based on the efforts of scientists in the 20th century, especially in the last three decades, topological, variational, geometrical and other methods have developed rapidly in nonlinear analysis, which made direct studies of nonlinear models possible in many cases, and provided global information on nonlinear problems which was not available by the traditional linearization method. This volume reflects that rapid development in many areas of nonlinear analysis.

Book Dynamic Systems and Applications

Download or read book Dynamic Systems and Applications written by and published by . This book was released on 1994 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metrical Almost Periodicity and Applications to Integro Differential Equations

Download or read book Metrical Almost Periodicity and Applications to Integro Differential Equations written by Marko Kostić and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-06-06 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometrical Methods in Variational Problems

Download or read book Geometrical Methods in Variational Problems written by N.A. Bobylov and published by Springer Science & Business Media. This book was released on 1999-07-31 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods. Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.

Book The Mountain Pass Theorem

Download or read book The Mountain Pass Theorem written by Youssef Jabri and published by Cambridge University Press. This book was released on 2003-09-15 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2003 book presents min-max methods through a study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. The reader is led from the most accessible results to the forefront of the theory, and at each step in this walk between the hills, the author presents the extensions and variants of the MPT in a complete and unified way. Coverage includes standard topics, but it also covers other topics covered nowhere else in book form: the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. Each chapter has a section with supplementary comments and bibliographical notes, and there is a rich bibliography and a detailed index to aid the reader. The book is suitable for researchers and graduate students. Nevertheless, the style and the choice of the material make it accessible to all newcomers to the field.

Book Advances in Differential Equations

Download or read book Advances in Differential Equations written by and published by . This book was released on 2005 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Analysis And Microlocal Analysis   Proceedings Of The International Conference At The Nankai Institute Of Mathematics

Download or read book Nonlinear Analysis And Microlocal Analysis Proceedings Of The International Conference At The Nankai Institute Of Mathematics written by Chang Kung-ching and published by World Scientific. This book was released on 1992-10-09 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings contain recent developments on the following important topics: variational problems, fully nonlinear elliptic equations, PDE from differential geometry, hamiltonian systems, nonlinear evolution equations and nonlinear microlocal analysis. Included are many interesting survey papers with the latest research materials.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinearity and Functional Analysis

Download or read book Nonlinearity and Functional Analysis written by Melvyn S. Berger and published by Academic Press. This book was released on 1977-10-27 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinearity and Functional Analysis is a collection of lectures that aim to present a systematic description of fundamental nonlinear results and their applicability to a variety of concrete problems taken from various fields of mathematical analysis. For decades, great mathematical interest has focused on problems associated with linear operators and the extension of the well-known results of linear algebra to an infinite-dimensional context. This interest has been crowned with deep insights, and the substantial theory that has been developed has had a profound influence throughout the mathematical sciences. This volume comprises six chapters and begins by presenting some background material, such as differential-geometric sources, sources in mathematical physics, and sources from the calculus of variations, before delving into the subject of nonlinear operators. The following chapters then discuss local analysis of a single mapping and parameter dependent perturbation phenomena before going into analysis in the large. The final chapters conclude the collection with a discussion of global theories for general nonlinear operators and critical point theory for gradient mappings. This book will be of interest to practitioners in the fields of mathematics and physics, and to those with interest in conventional linear functional analysis and ordinary and partial differential equations.

Book An Introduction to Minimax Theorems and Their Applications to Differential Equations

Download or read book An Introduction to Minimax Theorems and Their Applications to Differential Equations written by Maria do Rosário Grossinho and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended to be an introduction to critical point theory and its applications to differential equations. Although the related material can be found in other books, the authors of this volume have had the following goals in mind: To present a survey of existing minimax theorems, To give applications to elliptic differential equations in bounded domains, To consider the dual variational method for problems with continuous and discontinuous nonlinearities, To present some elements of critical point theory for locally Lipschitz functionals and give applications to fourth-order differential equations with discontinuous nonlinearities, To study homoclinic solutions of differential equations via the variational methods. The contents of the book consist of seven chapters, each one divided into several sections. Audience: Graduate and post-graduate students as well as specialists in the fields of differential equations, variational methods and optimization.

Book

Download or read book written by and published by . This book was released on 1992 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: