EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

Download or read book Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-04 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.Witzberger, Kevin E. and Manzella, DavidGlenn Research CenterHALL THRUSTERS; SOLAR ELECTRIC PROPULSION; DEEP SPACE 1 MISSION; SPACECRAFT CONFIGURATIONS; NASA SPACE PROGRAMS; SOLAR ARRAYS; POWER CONDITIONING; MATHEMATICAL MODELS; SPECIFIC IMPULSE; HIGH VOLTAGES; NEPTUNE (PLANET); SATURN (PLANET); LAUNCH VEHICLES

Book Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

Download or read book Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion written by Nasa Technical Reports Server (Ntrs) and published by BiblioGov. This book was released on 2013-07 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

Book Fundamentals of Electric Propulsion

Download or read book Fundamentals of Electric Propulsion written by Dan M. Goebel and published by John Wiley & Sons. This book was released on 2008-12-22 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.

Book Advanced Electric Propulsion for Space Solar Power Satellites

Download or read book Advanced Electric Propulsion for Space Solar Power Satellites written by and published by . This book was released on 1999 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solar Power System Analyses for Electric Propulsion Missions

Download or read book Solar Power System Analyses for Electric Propulsion Missions written by and published by . This book was released on 1999 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Power Hall Propulsion Development at NASA Glenn Research Center

Download or read book High Power Hall Propulsion Development at NASA Glenn Research Center written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2019-01-14 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date Kamhawi, Hani and Manzella, David H. and Smith, Timothy D. and Schmidt, George R. Glenn Research Center WBS 182603.01.04.02

Book Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

Download or read book Ion Engine and Hall Thruster Development at the NASA Glenn Research Center written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-20 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration. Domonkos, Matthew T. and Patterson, Michael J. and Jankovsky, Robert S. Glenn Research Center NASA/TM-2002-211969, NAS 1.15:211969, E-13612, IMECE-2002-34444

Book Advanced Hall Electric Propulsion for Future In Space Transportation

Download or read book Advanced Hall Electric Propulsion for Future In Space Transportation written by and published by . This book was released on 2001 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of an Ion Thruster and Power Processor for New Millennium s Deep Space 1 Mission

Download or read book Development of an Ion Thruster and Power Processor for New Millennium s Deep Space 1 Mission written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-02 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests. Sovey, James S. and Hamley, John A. and Haag, Thomas W. and Patterson, Michael J. and Pencil, Eric J. and Peterson, Todd T. and Pinero, Luis R. and Power, John L. and Rawlin, Vincent K. and Sarmiento, Charles J. and Anderson, John R. and Bond, Thomas A. and Cardwell, G. I. and Christensen, Jon A. Glenn Research Center; Jet Propulsion Laboratory RTOP 242-70-01...

Book Early Application of Solar electric Propulsion to a 1 astronomical unit Out of the ecliptic Mission

Download or read book Early Application of Solar electric Propulsion to a 1 astronomical unit Out of the ecliptic Mission written by William C. Strack and published by . This book was released on 1970 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current technology for solar-electric propulsion is used to assess the potential performance advantages of low-thrust propulsion for an out-of-the-ecliptic mission. Simple normal-to-the-orbit thrust steering is assumed with coast subarcs permitted. The electric spacecraft is launched onto an Earth escape trajectory by an Atlas (SLV3C)-Centaur or a Titan IIIC. Comparisons with a similarly launched uprated Burner II stage reveal that significant performance gains are possible using the electric stage with 250- to 475-day flight times.

Book Solar Electric Propulsion Mission Architectures

    Book Details:
  • Author : National Aeronautics and Space Administration (NASA)
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2018-06-20
  • ISBN : 9781721583942
  • Pages : 34 pages

Download or read book Solar Electric Propulsion Mission Architectures written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-20 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed from the earliest missions in the 1960's, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions. Kerslake, Thomas W. Glenn Research Center NASA/TM-2003-212456, NAS 1.15:212456, E-13995

Book Laying the Foundation for Space Solar Power

Download or read book Laying the Foundation for Space Solar Power written by National Research Council and published by National Academies Press. This book was released on 2001-10-30 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: In March 2000, NASA's Office of Space Flight asked the Aeronautics and Space Engineering Board of the National Research Council to perform an independent assessment of the space solar power program's technology investment strategy to determine its technical soundness and its contribution to the roadmap that NASA has developed for this program. The program's investment strategy was to be evaluated in the context of its likely effectiveness in meeting the program's technical and economic objectives.

Book A Comparison of Electric Propulsion Systems for Mars Exploration

Download or read book A Comparison of Electric Propulsion Systems for Mars Exploration written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-20 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earth-Mars trajectories for multiple solar-powered spacecraft configurations were generated using Hall and ion propulsion systems utilizing the Direct Trajectory Optimization Method. Payload and power trades versus trip time were examined. Performance was compared for purely interplanetary flight and interplanetary flight with estimated spiral in to Mars orbit. Evaluating current ion and Hall thruster technologies, similar payload masses were delivered by each at equivalent trip times, but with the Hall thruster operating at a power level 10 kilowatts, on average, less than the ion thruster. The power difference for equivalent payload delivered should result in a significant cost savings. Fiehler, Douglas and Oleson, Steve Glenn Research Center NASA/TM-2003-212593, E-14150, NAS 1.15:212593, AIAA Paper 2003-4574