EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Partitional Clustering via Nonsmooth Optimization

Download or read book Partitional Clustering via Nonsmooth Optimization written by Adil M. Bagirov and published by Springer Nature. This book was released on 2020-02-24 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.

Book Partitional Clustering Via Nonsmooth Optimization

Download or read book Partitional Clustering Via Nonsmooth Optimization written by Adil Bagirov and published by Springer. This book was released on 2025-01-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from very large data and data with noise and outliers. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization. Designed for a typical undergraduate, graduate, or dual-listed course with a semester-based calendar; Puts theory in context, so readers gain knowledge about the most essential concepts and algorithms; Covers essential terms, algorithms, and useful tools for learning and performing contemporary AI.

Book Nonsmooth Optimization in Honor of the 60th Birthday of Adil M  Bagirov

Download or read book Nonsmooth Optimization in Honor of the 60th Birthday of Adil M Bagirov written by Napsu Karmitsa and published by MDPI. This book was released on 2020-12-18 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book was to collect the most recent methods developed for NSO and its practical applications. The book contains seven papers: The first is the foreword by the Guest Editors giving a brief review of NSO and its real-life applications and acknowledging the outstanding contributions of Professor Adil Bagirov to both the theoretical and practical aspects of NSO. The second paper introduces a new and very efficient algorithm for solving uncertain unit-commitment (UC) problems. The third paper proposes a new nonsmooth version of the generalized damped Gauss–Newton method for solving nonlinear complementarity problems. In the fourth paper, the abs-linear representation of piecewise linear functions is extended to yield simultaneously their DC decomposition as well as the pair of generalized gradients. The fifth paper presents the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and nonsmooth optimization problems in many practical applications. In the sixth paper, a problem concerning the scheduling of nuclear waste disposal is modeled as a nonsmooth multiobjective mixed-integer nonlinear optimization problem, and a novel method using the two-slope parameterized achievement scalarizing functions is introduced. Finally, the last paper considers binary classification of a multiple instance learning problem and formulates the learning problem as a nonconvex nonsmooth unconstrained optimization problem with a DC objective function.

Book Cluster Analysis and Applications

Download or read book Cluster Analysis and Applications written by Rudolf Scitovski and published by Springer Nature. This book was released on 2021-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results. This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields. Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods. With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.

Book Partitional Clustering Algorithms

Download or read book Partitional Clustering Algorithms written by M. Emre Celebi and published by Springer. This book was released on 2014-11-07 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on partitional clustering algorithms, which are commonly used in engineering and computer scientific applications. The goal of this volume is to summarize the state-of-the-art in partitional clustering. The book includes such topics as center-based clustering, competitive learning clustering and density-based clustering. Each chapter is contributed by a leading expert in the field.

Book Artificial Intelligence  Theories and Applications

Download or read book Artificial Intelligence Theories and Applications written by Mohammed Salem and published by Springer Nature. This book was released on 2023-03-17 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes selected papers presented at the First International Conference on Artificial Intelligence: Theories and Applications, ICAITA 2022, held in Mascara, Algeria, in November 2022. The 23 papers were thoroughly reviewed and selected from the 66 qualified submissions. They are organized in topical sections on ​artificial vision; and articial intelligence in big data and natural language processing.

Book Data Classification and Incremental Clustering in Data Mining and Machine Learning

Download or read book Data Classification and Incremental Clustering in Data Mining and Machine Learning written by Sanjay Chakraborty and published by Springer Nature. This book was released on 2022-05-10 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Naïve Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.

Book Introduction to Nonsmooth Optimization

Download or read book Introduction to Nonsmooth Optimization written by Adil Bagirov and published by Springer. This book was released on 2014-08-12 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.

Book Nonsmooth Optimization  Analysis And Algorithms With Applications To Optimal Control

Download or read book Nonsmooth Optimization Analysis And Algorithms With Applications To Optimal Control written by Marko M Makela and published by World Scientific. This book was released on 1992-05-07 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.

Book Numerical Analysis and Optimization

Download or read book Numerical Analysis and Optimization written by Mehiddin Al-Baali and published by Springer. This book was released on 2018-05-31 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 13 selected keynote papers presented at the Fourth International Conference on Numerical Analysis and Optimization. Held every three years at Sultan Qaboos University in Muscat, Oman, this conference highlights novel and advanced applications of recent research in numerical analysis and optimization. Each peer-reviewed chapter featured in this book reports on developments in key fields, such as numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, derivative-free optimization methods, programming models, and challenging applications that frequently arise in statistics, econometrics, finance, physics, medicine, biology, engineering and industry. Any graduate student or researched wishing to know the latest research in the field will be interested in this volume. This book is dedicated to the late Professors Mike JD Powell and Roger Fletcher, who were the pioneers and leading figures in the mathematics of nonlinear optimization.

Book Encyclopedia of Optimization

Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Book Modern Statistical Methods for Health Research

Download or read book Modern Statistical Methods for Health Research written by Yichuan Zhao and published by Springer Nature. This book was released on 2021-10-14 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the voices of leading experts in the frontiers of biostatistics, biomedicine, and the health sciences to discuss the statistical procedures, useful methods, and novel applications in biostatistics research. It also includes discussions of potential future directions of biomedicine and new statistical developments for health research, with the intent of stimulating research and fostering the interactions of scholars across health research related disciplines. Topics covered include: Health data analysis and applications to EHR data Clinical trials, FDR, and applications in health science Big network analytics and its applications in GWAS Survival analysis and functional data analysis Graphical modelling in genomic studies The book will be valuable to data scientists and statisticians who are working in biomedicine and health, other practitioners in the health sciences, and graduate students and researchers in biostatistics and health.

Book Introduction to Applied Linear Algebra

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Book The     IEEE International Conference on Fuzzy Systems Proceedings

Download or read book The IEEE International Conference on Fuzzy Systems Proceedings written by and published by . This book was released on 1998 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization

    Book Details:
  • Author : Kenneth Lange
  • Publisher : Springer Science & Business Media
  • Release : 2004-06-17
  • ISBN : 9780387203324
  • Pages : 282 pages

Download or read book Optimization written by Kenneth Lange and published by Springer Science & Business Media. This book was released on 2004-06-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lange is a Springer author of other successful books. This is the first book that emphasizes the applications of optimization to statistics. The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics.

Book Derivative Free and Blackbox Optimization

Download or read book Derivative Free and Blackbox Optimization written by Charles Audet and published by Springer. This book was released on 2017-12-02 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.

Book Principles of Data Mining

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.