EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Three Dimensional Navier Stokes Equations

Download or read book The Three Dimensional Navier Stokes Equations written by James C. Robinson and published by Cambridge University Press. This book was released on 2016-09-07 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible treatment of the main results in the mathematical theory of the Navier-Stokes equations, primarily aimed at graduate students.

Book Three Dimensional Navier Stokes Equations for Turbulence

Download or read book Three Dimensional Navier Stokes Equations for Turbulence written by Luigi C. Berselli and published by Academic Press. This book was released on 2021-03-10 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-Dimensional Navier-Stokes Equations for Turbulence provides a rigorous but still accessible account of research into local and global energy dissipation, with particular emphasis on turbulence modeling. The mathematical detail is combined with coverage of physical terms such as energy balance and turbulence to make sure the reader is always in touch with the physical context. All important recent advancements in the analysis of the equations, such as rigorous bounds on structure functions and energy transfer rates in weak solutions, are addressed, and connections are made to numerical methods with many practical applications. The book is written to make this subject accessible to a range of readers, carefully tackling interdisciplinary topics where the combination of theory, numerics, and modeling can be a challenge. - Includes a comprehensive survey of modern reduced-order models, including ones for data assimilation - Includes a self-contained coverage of mathematical analysis of fluid flows, which will act as an ideal introduction to the book for readers without mathematical backgrounds - Presents methods and techniques in a practical way so they can be rapidly applied to the reader's own work

Book Mathematical Analysis of the Navier Stokes Equations

Download or read book Mathematical Analysis of the Navier Stokes Equations written by Matthias Hieber and published by Springer Nature. This book was released on 2020-04-28 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.

Book Introductory Incompressible Fluid Mechanics

Download or read book Introductory Incompressible Fluid Mechanics written by Frank H. Berkshire and published by Cambridge University Press. This book was released on 2021-12-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the mathematics of incompressible fluid mechanics and its applications keeps prerequisites to a minimum – only a background knowledge in multivariable calculus and differential equations is required. Part One covers inviscid fluid mechanics, guiding readers from the very basics of how to represent fluid flows through to the incompressible Euler equations and many real-world applications. Part Two covers viscous fluid mechanics, from the stress/rate of strain relation to deriving the incompressible Navier-Stokes equations, through to Beltrami flows, the Reynolds number, Stokes flows, lubrication theory and boundary layers. Also included is a self-contained guide on the global existence of solutions to the incompressible Navier-Stokes equations. Students can test their understanding on 100 progressively structured exercises and look beyond the scope of the text with carefully selected mini-projects. Based on the authors' extensive teaching experience, this is a valuable resource for undergraduate and graduate students across mathematics, science, and engineering.

Book The Navier Stokes Equations

Download or read book The Navier Stokes Equations written by Hermann Sohr and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Book Three Regularity Results Related to the Navier Stokes Equations

Download or read book Three Regularity Results Related to the Navier Stokes Equations written by Dapeng Du and published by . This book was released on 2005 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamental Directions in Mathematical Fluid Mechanics

Download or read book Fundamental Directions in Mathematical Fluid Mechanics written by Giovanni P. Galdi and published by Birkhäuser. This book was released on 2012-12-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.

Book The Mathematical Analysis of the Incompressible Euler and Navier Stokes Equations

Download or read book The Mathematical Analysis of the Incompressible Euler and Navier Stokes Equations written by Jacob Bedrossian and published by American Mathematical Society. This book was released on 2022-09-21 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

Book Applied mechanics reviews

Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Differential Equations and Fluid Mechanics

Download or read book Partial Differential Equations and Fluid Mechanics written by James C. Robinson and published by Cambridge University Press. This book was released on 2009-07-16 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews and research articles summarizing a wide range of active research topics in fluid mechanics.

Book Fields Medallists  Lectures

Download or read book Fields Medallists Lectures written by Michael Atiyah and published by World Scientific. This book was released on 1997-10-13 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics - and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes. The restriction to 40 years is of marginal significance, since most mathematicians have made their mark long before this age.A list of Fields Medallists and their contributions provides a bird's eye view of mathematics over the past 60 years. It highlights the areas in which, at various times, greatest progress has been made. This volume does not pretend to be comprehensive, nor is it a historical document. On the other hand, it presents contributions from 22 Fields Medallists and so provides a highly interesting and varied picture.The contributions themselves represent the choice of the individual Medallists. In some cases the articles relate directly to the work for which the Fields Medals were awarded. In other cases new articles have been produced which relate to more current interests of the Medallists. This indicates that while Fields Medallists must be under 40 at the time of the award, their mathematical development goes well past this age. In fact the age limit of 40 was chosen so that young mathematicians would be encouraged in their future work.The Fields Medallists' Lectures is now available on CD-ROM. Sections can be accessed at the touch of a button, and similar topics grouped together using advanced keyword searches.

Book Proceedings of the International Congress of Mathematicians

Download or read book Proceedings of the International Congress of Mathematicians written by S.D. Chatterji and published by Birkhäuser. This book was released on 2012-12-06 with total page 1669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)

Book Fields Medallists  Lectures

Download or read book Fields Medallists Lectures written by Daniel Iagolnitzer and published by World Scientific. This book was released on 2003 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to the field of mathematics and an age limit of 40 has become an accepted tradition. This volume presents contributions from Fields Medallists.

Book From Particle Systems to Partial Differential Equations

Download or read book From Particle Systems to Partial Differential Equations written by Cédric Bernardin and published by Springer Nature. This book was released on 2021-05-30 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general, whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to those physicists who work in statistical mechanics and kinetic theory.

Book Initial boundary Value Problems and the Navier Stokes Equations

Download or read book Initial boundary Value Problems and the Navier Stokes Equations written by Heinz-Otto Kreiss and published by SIAM. This book was released on 1989-01-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.

Book Recent developments in the Navier Stokes problem

Download or read book Recent developments in the Navier Stokes problem written by Pierre Gilles Lemarie-Rieusset and published by CRC Press. This book was released on 2002-04-26 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.