Download or read book Partial Differential Equations with Minimal Smoothness and Applications written by B. Dahlberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a great deal of activity in both the theoretical and applied aspects of partial differential equations, with emphasis on realistic engineering applications, which usually involve lack of smoothness. On March 21-25, 1990, the University of Chicago hosted a workshop that brought together approximately fortyfive experts in theoretical and applied aspects of these subjects. The workshop was a vehicle for summarizing the current status of research in these areas, and for defining new directions for future progress - this volume contains articles from participants of the workshop.
Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book Partial Differential Equations with Minimal Smoothness and Applications written by B Dahlberg and published by . This book was released on 1992-03-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a great deal of activity in both the theoretical and applied aspects of partial differential equations, with emphasis on realistic engineering applications, which usually involve lack of smoothness. On March 21-25, 1990, the University of Chicago hosted a workshop that brought together approximately fortyfive experts in theoretical and applied aspects of these subjects. The workshop was a vehicle for summarizing the current status of research in these areas, and for defining new directions for future progress - this volume contains articles from participants of the workshop.
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Download or read book Nonlinear Partial Differential Equations with Applications written by Tomás Roubicek and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Download or read book Malliavin Calculus with Applications to Stochastic Partial Differential Equations written by Marta Sanz-Sole and published by CRC Press. This book was released on 2005-08-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed in the 1970s to study the existence and smoothness of density for the probability laws of random vectors, Malliavin calculus--a stochastic calculus of variation on the Wiener space--has proven fruitful in many problems in probability theory, particularly in probabilistic numerical methods in financial mathematics. This book present
Download or read book Partial Differential Equations and Boundary Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Download or read book Partial Differential Equations written by Vladimir A. Tolstykh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-08 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a clear, rigorous and self-contained introduction to PDEs for a semester-based course on the topic. For the sake of smooth exposition, the book keeps the amount of applications to a minimum, focusing instead on the theoretical essentials and problem solving. The result is an agile compendium of theorems and methods - the ideal companion for any student tackling PDEs for the first time. Vladimir Tolstykh is a professor of mathematics at Istanbul Arel University. He works in group theory and model-theoretic algebra. Dr. Tolstykh received his Ph.D. in Mathematics from the Ural Institute of Mathematics and Mechanics (Ekaterinburg (Russia) in 1992 and his Doctor of Science degree in Mathematics from the Sobolev Institute of Mathematics (Novosibirsk, Russia) in 2007.
Download or read book Analysis of Finite Difference Schemes written by Boško S. Jovanović and published by Springer Science & Business Media. This book was released on 2013-10-22 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Download or read book Introduction to Partial Differential Equations written by Aslak Tveito and published by Springer Science & Business Media. This book was released on 2008-01-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.
Download or read book Perspectives in Partial Differential Equations Harmonic Analysis and Applications written by Dorina Mitrea and published by American Mathematical Soc.. This book was released on 2008 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.
Download or read book Functional Differential Equations written by A.V. Kim and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with the works of N.N.Krasovskii [81, 82, 83], which clari fied the functional nature of systems with delays, the functional approach provides a foundation for a complete theory of differential equations with delays. Based on the functional approach, different aspects of time-delay system theory have been developed with almost the same completeness as the corresponding field of ODE (ordinary differential equations) the ory. The term functional differential equations (FDE) is used as a syn onym for systems with delays 1. The systematic presentation of these re sults and further references can be found in a number of excellent books [2, 15, 22, 32, 34, 38, 41, 45, 50, 52, 77, 78, 81, 93, 102, 128]. In this monograph we present basic facts of i-smooth calculus ~ a new differential calculus of nonlinear functionals, based on the notion of the invariant derivative, and some of its applications to the qualitative theory of functional differential equations. Utilization of the new calculus is the main distinction of this book from other books devoted to FDE theory. Two other distinguishing features of the volume are the following: - the central concept that we use is the separation of finite dimensional and infinite dimensional components in the structures of FDE and functionals; - we use the conditional representation of functional differential equa tions, which is convenient for application of methods and constructions of i~smooth calculus to FDE theory.
Download or read book New Tools for Nonlinear PDEs and Application written by Marcello D'Abbicco and published by Springer. This book was released on 2019-05-07 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.
Download or read book Parallel Solution of Partial Differential Equations written by Petter Bjorstad and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.
Download or read book Tools for PDE written by Michael E. Taylor and published by American Mathematical Soc.. This book was released on 2000 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.
Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.