EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Partial Differential Equations of Mathematical Physics

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Book Mathematical Physics with Partial Differential Equations

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Book Partial Differential Equations in Classical Mathematical Physics

Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Book Partial Differential Equations for Mathematical Physicists

Download or read book Partial Differential Equations for Mathematical Physicists written by Bijan Kumar Bagchi and published by CRC Press. This book was released on 2019-07-02 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial Differential Equations for Mathematical Physicists is intended for graduate students, researchers of theoretical physics and applied mathematics, and professionals who want to take a course in partial differential equations. This book offers the essentials of the subject with the prerequisite being only an elementary knowledge of introductory calculus, ordinary differential equations, and certain aspects of classical mechanics. We have stressed more the methodologies of partial differential equations and how they can be implemented as tools for extracting their solutions rather than dwelling on the foundational aspects. After covering some basic material, the book proceeds to focus mostly on the three main types of second order linear equations, namely those belonging to the elliptic, hyperbolic, and parabolic classes. For such equations a detailed treatment is given of the derivation of Green's functions, and of the roles of characteristics and techniques required in handling the solutions with the expected amount of rigor. In this regard we have discussed at length the method of separation variables, application of Green's function technique, and employment of Fourier and Laplace's transforms. Also collected in the appendices are some useful results from the Dirac delta function, Fourier transform, and Laplace transform meant to be used as supplementary materials to the text. A good number of problems is worked out and an equally large number of exercises has been appended at the end of each chapter keeping in mind the needs of the students. It is expected that this book will provide a systematic and unitary coverage of the basics of partial differential equations. Key Features An adequate and substantive exposition of the subject. Covers a wide range of important topics. Maintains mathematical rigor throughout. Organizes materials in a self-contained way with each chapter ending with a summary. Contains a large number of worked out problems.

Book Partial Differential Equations of Mathematical Physics

Download or read book Partial Differential Equations of Mathematical Physics written by Arthur Godon Webster and published by Courier Dover Publications. This book was released on 2016-06-20 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.

Book Mathematical Methods

    Book Details:
  • Author : Sadri Hassani
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 038721562X
  • Pages : 673 pages

Download or read book Mathematical Methods written by Sadri Hassani and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.

Book Mathematical Physics

    Book Details:
  • Author : Sadri Hassani
  • Publisher : Springer Science & Business Media
  • Release : 2002-02-08
  • ISBN : 9780387985794
  • Pages : 1052 pages

Download or read book Mathematical Physics written by Sadri Hassani and published by Springer Science & Business Media. This book was released on 2002-02-08 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt: For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.

Book Partial Differential Equations of Mathematical Physics

Download or read book Partial Differential Equations of Mathematical Physics written by Tyn Myint U. and published by . This book was released on 1980 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Methods in Physics

Download or read book Mathematical Methods in Physics written by Victor Henner and published by CRC Press. This book was released on 2009-06-18 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that

Book Partial Differential Equations and Mathematical Physics

Download or read book Partial Differential Equations and Mathematical Physics written by Kunihiko Kajitani and published by Springer Science & Business Media. This book was released on 2002-12-13 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.

Book Equations of Mathematical Physics

Download or read book Equations of Mathematical Physics written by A. N. Tikhonov and published by Courier Corporation. This book was released on 2013-09-16 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.

Book Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Download or read book Kernel Functions and Elliptic Differential Equations in Mathematical Physics written by Stefan Bergman and published by Courier Corporation. This book was released on 2005-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by H. Bateman and published by Walton Press. This book was released on 2008-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS BY H. BAT EM AN, M. A., PH. D. Late Fellow of Trinity College, Cambridge Professor of Mathematics, Theoretical Physics and Aeronautics, California Institute of Technology, Pasadena, California NEW YORK DOVER PUBLICATIONS 1944 First Edition 1932 First American Edition 1944 By special arrangement with the Cambridge University Press and The Macmillan Co. Printed in the U. S. A. Dedicated to MY MOTHER CONTENTS PREFACE page xiii INTRODUCTION xv-xxii CHAPTER I THE CLASSICAL EQUATIONS 1-11-1-14. Uniform motion, boundary conditions, problems, a passage to the limit. 1-7 1-15-1-19. Fouriers theorem, Fourier constants, Cesaros method of summation, Parsevals theorem, Fourier series, the expansion of the integral of a bounded function which is continuous bit by bit. . 7-16 1-21-1-25. The bending of a beam, the Greens function, the equation of three moments, stability of a strut, end conditions, examples. 16-25 1 31-1-36. F ee undamped vibrations, simple periodic motion, simultaneous linear equations, the Lagrangian equations of motion, normal vibrations, com pound pendulum, quadratic forms, Hermit ian forms, examples. 25-40 1-41-1 - 42. Forced oscillations, residual oscillation, examples. 40-44 1-43. Motion with a resistance proportional to the velocity, reduction to alge braic equations. 44 d7 1-44. The equation of damped vibrations, instrumental records. 47-52 1-45-1 - 46. The dissipation function, reciprocal relations. 52-54 1-47-1-49. Fundamental equations of electric circuit theory, Cauchys method of solving a linear equation, Heavisides expansion. 54-6Q 1-51 1-56. The simple wave-equation, wave propagation, associated equations, transmission of vibrations, vibration of a building, vibration of a string, torsional oscillations of a rod, plane waves of sound, waves in a canal, examples. 60-73 1-61-1 - 63. Conjugate functions and systems of partial differential equations, the telegraphic equation, partial difference equations, simultaneous equations involving high derivatives, examplu. 73-77 1-71-1-72. Potentials and stream-functions, motion of a fluid, sources and vortices, two-dimensional stresses, geometrical properties of equipotentials and lines of force, method of inversion, examples. 77-90 1-81-1-82. The classical partial differential equations for Euclidean space, Laplaces equation, systems of partial differential equations of the first order fchich lead to the classical equations, elastic equilibrium, equations leading to the uations of wave-motion, 90-95 S 1 91. Primary solutions, Jacobis theorem, examples. 95-100 1 92. The partial differential equation of the characteristics, bicharacteristics and rays. 101-105 1 93-1 94. Primary solutions of the second grade, primitive solutions of the wave-equation, primitive solutions of Laplaces equation. 105-111 1-95. Fundamental solutions, examples. 111-114 viii Contents CHAPTER n APPLICATIONS OF THE INTEGRAL THEOREMS OF GREEN AND STOKES 2 11-2-12. Greens theorem, Stokes s theorem, curl of a vector, velocity potentials, equation of continuity. pages 116-118 2-13-2-16. The equation of the conduction of heat, diffusion, the drying of wood, the heating of a porous body by a warm fluid, Laplaces method, example. 118-125 2-21-2 22. Riemanns method, modified equation of diffusion, Greens func tions, examples. 126-131 f 2-23-2 26. Green s theorem for a general lineardifferential equation of the second order, characteristics, classification of partial differential equations of the second order, a property of equations of elliptic type, maxima and minima of solutions. 131-138 2-31-2-32. Greens theorem for Laplaces equation, Greens functions, reciprocal relations. 138-144 2-33-2-34. Partial difference equations, associated quadratic form, the limiting process, inequalities, properties of the limit function. 144-152 2-41-2-42...

Book Partial Differential Equations arising from Physics and Geometry

Download or read book Partial Differential Equations arising from Physics and Geometry written by Mohamed Ben Ayed and published by Cambridge University Press. This book was released on 2019-05-02 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.

Book Linear Partial Differential Equations for Scientists and Engineers

Download or read book Linear Partial Differential Equations for Scientists and Engineers written by Tyn Myint-U and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Book Differential Geometry  Differential Equations  and Mathematical Physics

Download or read book Differential Geometry Differential Equations and Mathematical Physics written by Maria Ulan and published by Springer Nature. This book was released on 2021-02-12 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.

Book Introduction to Partial Differential Equations with Applications

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.