Download or read book Online Optimization of Large Scale Systems written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.
Download or read book Sensitivity Analysis Matrix Methods in Demography and Ecology written by Hal Caswell and published by Springer. This book was released on 2019-04-02 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Download or read book Global Sensitivity Analysis written by Andrea Saltelli and published by John Wiley & Sons. This book was released on 2008-02-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.
Download or read book Parametric Sensitivity in Chemical Systems written by Arvind Varma and published by Cambridge University Press. This book was released on 1999-03-13 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The behavior of a chemical system is affected by many physicochemical parameters. The sensitivity of the system's behavior to changes in parameters is known as parametric sensitivity. When a system operates in a parametrically sensitive region, its performance becomes unreliable and changes sharply with small variations in parameters. Thus, it would be of great value to predict sensitivity behavior in chemical systems. This book is the first to provide a thorough treatment of the concept of parametric sensitivity and the mathematical tool it generated, sensitivity analysis. The emphasis is on applications to real situations. The book begins with definitions of various sensitivity indices and describes the numerical techniques used for their evaluation. Extensively illustrated chapters discuss sensitivity analysis in a variety of chemical reactors - batch, tubular, continuous-flow, fixed-bed - and in combustion systems, air pollution, and metabolic processes. Chemical engineers, chemists, graduate students, and researchers will welcome this valuable resource.
Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Download or read book The Prevention and Treatment of Missing Data in Clinical Trials written by National Research Council and published by National Academies Press. This book was released on 2010-12-21 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Download or read book Sensitivity Analysis in Practice written by Andrea Saltelli and published by John Wiley & Sons. This book was released on 2004-07-16 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.
Download or read book Developing a Protocol for Observational Comparative Effectiveness Research A User s Guide written by Agency for Health Care Research and Quality (U.S.) and published by Government Printing Office. This book was released on 2013-02-21 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Download or read book Optimal Control of ODEs and DAEs written by Matthias Gerdts and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. The book addresses primarily master and PhD students as well as researchers in applied mathematics, but also engineers or scientists with a good background in mathematics and interest in optimal control. The theoretical parts of the book require some knowledge of functional analysis, the numerically oriented parts require knowledge from linear algebra and numerical analysis. Examples are provided for illustration purposes.
Download or read book Computational Mathematical Programming written by Klaus Schittkowski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems).
Download or read book Technometrics written by and published by . This book was released on 2001 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Sensitivity Analysis in Linear Systems written by Assem Deif and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text surveying perturbation techniques and sensitivity analysis of linear systems is an ambitious undertaking, considering the lack of basic comprehensive texts on the subject. A wide-ranging and global coverage of the topic is as yet missing, despite the existence of numerous monographs dealing with specific topics but generally of use to only a narrow category of people. In fact, most works approach this subject from the numerical analysis point of view. Indeed, researchers in this field have been most concerned with this topic, although engineers and scholars in all fields may find it equally interesting. One can state, without great exaggeration, that a great deal of engineering work is devoted to testing systems' sensitivity to changes in design parameters. As a rule, high-sensitivity elements are those which should be designed with utmost care. On the other hand, as the mathematical modelling serving for the design process is usually idealized and often inaccurately formulated, some unforeseen alterations may cause the system to behave in a slightly different manner. Sensitivity analysis can help the engineer innovate ways to minimize such system discrepancy, since it starts from the assumption of such a discrepancy between the ideal and the actual system.
Download or read book Response Surfaces Mixtures and Ridge Analyses written by George E. P. Box and published by John Wiley & Sons. This book was released on 2007-01-22 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.
Download or read book Statistical Tools for Nonlinear Regression written by Sylvie Huet and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Tools for Nonlinear Regression presents methods for analyzing data. It has been expanded to include binomial, multinomial and Poisson non-linear models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap.
Download or read book Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos written by Janya-anurak, Chettapong and published by KIT Scientific Publishing. This book was released on 2017-04-04 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.
Download or read book Explicit Nonlinear Model Predictive Control written by Alexandra Grancharova and published by Springer Science & Business Media. This book was released on 2012-03-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Download or read book Assessment and Future Directions of Nonlinear Model Predictive Control written by Rolf Findeisen and published by Springer. This book was released on 2007-09-08 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.